3 8

8 8 8 8

8

£
H
8
i
&

0 |
A HISTORY OF THE ATOM: THEORIES AND MODELS

How have our ideas about atoms changed over the years? This graphic looks at atomic models and how they developed.
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—§19 1

e kunt mtleggen welke drie kenmerken het atoommodel van Bohr heeft en hoe het lijnenspectra van elementen verklaart.
[

B. Je kunt uitleggen hoe de golfhypothese omtrent elektronen van DeBroglie de elektronbanen in het atoommodel verklaart.

| | ‘
D. Je kunt rekenen aan kinetische en potentiéle energie in waterstof, inclusief nulpuntsenergie en energieniveau's. |

deeltjes
I

-’ |
| | | . | | | | | | | | | | | | -| | = _| | | Essentiéle subkopjes uit het boek:
-§19.2 G. Je kunt voor licht en voor elektronen voorbeelden geven van de golf/deeltje-dualiteit en rekenen 1,3,7,9,11* 13* 16, 20en 22 —|
aan deze dualltelt onder meer met deze formules en het |dee van c!e DeB roglle golﬂengte —— (* z:('ee" df):ec:"ie'@" die in de{;—e
| | subkopjes beschreven zijn, nietde _|
H. Je kunt rekenen aan versnelde elektronen in c!e dlﬁractlebms en de elektronenmlcroscoop ‘ ~ uitleg achter die technieken.)
| | | | - | | | | | | | | | = | | | . | | | | | , INutl'lge opgawlan uit hoofdstulk e |
§19.3 I. Je kunt uitleggen wat bedoeld wordt met de golffunctie van een deeltje en je kunt m.b.v. een gegeven ' 4,14,16,22, 23,25, 27, 29, 30,
go||ffunt|:t|e d|e wa|arsch||jnllj|kheuil bep|a|en Tiat je|' een |c!ee|t|je op| een |plaats zult aantreffen. 435,1:;;.?:'9,3;63:::h:i:;:;'a:;;;:;.—
CE's vanaf 2016.
ﬁ J. Je kunt rekenen met de onbepaaldheidsrelatie van Heisenberg. =, / | | | |
| | | | | | | | | | | |
1 §19.4 L. Je kunt rekenen aan het deeltje-in-een-energieput- / k DeBroglie-golflengte
| mlodel |en ‘u'claorbeleIclen| noeTnen !;Naariln ditlmodel geldig }:|. } \// van deeltjes
7819.5 7PM. Je kunt uitleggen wat het tunneleffect is ' / /N ]
# Jen welke invloed het heeft op amplitude en // / \ ﬂ - — |
golflengte van een tunnelend deeltje. /
| = 2 / |
/ K | | | |
- o T impuls en golflengte van versnelde elektronen 7
rekenen aan golf/deeltje-dualiteit Pz
. - 1 : LA L 2.4 NI
onze kerh_(%!dsreiatle deeitje ineen energiepu‘t energie |mPU|5 Ek: 2 mU s 2 = P B zm'. EH
van Heisenberg k - A m
1 %2 gty [ M Eani ) F [ Gl gy Geeiae |
n n- 1 = == =m: =
AX- bP_ 4y — d 8mL™ _ massa E=-;m0'z P=mv P 2me E, -
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' §19.2 | G.Je kunt voor licht en voor elektronen voorbeelden geven van de golf/deeltje-dualiteit en rekenen

aan deze dualiteit, onder meer met deze formules en het idee van de DeBroglie-golflengte.
| | | | | | | | | | | | | | | |

Extra bordoefening 1b: Een elektron heeft een kinetische energie
van 8,50 x 10?2 J. Welke DeBroglie-golflengte hoort bij dit elektron? e e———

Extra bordoefening 1a: Een elektron verlaat een kanon met een snelheid van 2,1 Q]

x 10° m/s. Wat is de impuls en wat is DeBroglie-golflengte van dit elektron? %
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-819.2 .}, Je kunt rekenen aan versnelde elektronen in de diffractiebuis en de elektronenmicroscoop.

Extra bordoefening 1c: Een elektron wordt versneld over een spanning U = 20,0 kV.

(O
Welke kinetische energie, impuls en DeBroglie-golflengte heeft dit elektron? %
>
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- §19.3

—J. Je kunt rekenen met de onbepaaldheidsrelatie van Heisenberg.

a. de absolute onzekerheid in impuls van de elektronen.
b. de onzekerheid in de plaats van de elektronen op een tijdstip nadat ze versneld zijn.

Extra bordoefening 1d: Er zit een onnauwkeurigheid in de versnelspanning van het elektronenkanon uit opg
1c die resulteert in een relatieve onnauwkeurigheid in de impuls vd elektronen van +/-2,0% . Reken uit:

Q.

+23 | L 2 J =
2,0 76 van FAdL Is 1,510 ! aus 2 ',S-Ioﬂ'

3,110 kﬂmé

deeltjes
I

‘ n 6,626-15“ ey L=l
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b. '-ITT DX (_”-r 3}'[0 th ) r DeBroglie-golflengte ||

i 3 -1 -5 van deeltjes
Extra bordoefening 1c: Een elektron wordt _ . - ) . 1.6:10 9 = 3210 j ||
versneld over een spanning U = 20,0 kV. Et!; - u q( 010 V 2 C d
Welke kinetische energie, impuls en ‘ — ” N ﬁ - —
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-§19.4+

—L. Je kunt rekenen aan het deeltje-in-een-energieput-model en voorbeelden noemen waarin dit model geldig is.
ISR P MM M "N AN "M (AN AN N TN TIND MR M "M O G I

Extra bordoefening 1e: Een elektron dat vrij kan bewegen in een langwerpig molecuul (lengte = 450 pm) kan
gemodelleerd worden als een deeltje in een 1-dimensionale energieput. Moleculen als geheel hebben daardoor ook
energietoestanden, net zoals atomen. Op een bepaald moment absorbeert het molecuul een foton waardoor een

deeltjes
I

elektron van de n = 3 toestand naar de n = 4 toestand springt. B-Carotene -
a. Bereken de energieén die horen bij deze energieniveau's. Eﬁﬁgwrww £
. - o /Y [T
b. Reken de frequentie uit van het geabsorbeerde foton. o
c. Reken uit welke golflengte van het elektron in het molecuul hoort bij n = 4. STARAR S vt
2 (o5 (o™ e
: -9 ~18 o - 1o =
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van deeltjes
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12 A== |
2.1 4so- 10 |
C- Ay = =228 pm P |
q z | | | |
P o e T impulsen golﬂengteP\;_an versnelde elektronen 7
onzekerheidsrelatie deeltje in een energieput energie impuls ] Ek= "'2 m.0? - %._— P: \ 2- M- En i
van Heisenberg y Eh P_ R m
— 2-L nh ¥ licht h-f T A B
AX-bp 2 T T VBl . 2 4 y pemy A 2
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-§19.4+

—L. Je kunt rekenen aan het deeltje-in-een-energieput-model en voorbeelden noemen waarin dit model geldig is. —
| | | | | | | | | | | | | | | | | | | | | | s ! !

Extra bordoefening 1f: Een elektron zit opgesloten in een blokje metaal met afmetingen 5,0 nm x LiEDreiding ==

2,0 nm x 10,0 nm (afmetingen x, y en z). Het elektron is in de grondtoestand.

a. Reken uit wat de bijdragen aan de energie van het elektron zijn voor elke orientatie (x, y en z).

3D-energieput en de invloed van Len n
op de energie vh het deeltje in de put.

b. Bereken de totale energie van het elektron in het blokje.
c. Bereken de totale energie van het elektron voor ny = 1; n,= 2; n, = 2.

— | | | | | | LE=E===

van deeltjes

P:\2.m E,

|

2 - 1 =20
i nﬁ R G\ o totaat, =T8T
B Qun ) & QA A 2\% ! ! il
[# 2} lﬁ—;. yll o - L y J
|- - I c. De termenvoor Ey, en E; tellen nu 2% = 4 keer
E ng-‘ Wt 12, (616261 53"':) = lo,zo _3 L \ zo zwaar als bij opg a en b omdat de getallen ny
ek g | = e 1 en n’ nu 2 zijn in plaats van 1. De optelling Eypr= | DeBroglie-golflengte |
4 t = -\
8"")}— é‘ o I' 6!,0 o E,+E, + E, wordt dan:
9 ! «+Ey+E,
=21 -20 y '22
A2 (b - 2410[ + 421510 | + lx 6,0-10° =
= 2 2 =
= — = 0010 -¥o
E QL I’ |4 % THI -9 2 6‘0 t Ag'. 1S '\
omL} o-9\o - (o010 7) U2 1o J |
. [ | Iflengt Ide elekt
rekenen aan golf/deeltje-dualiteit e eP\;_anversne e
onzekerheidsrelatie deeltje in een energieput - e | | | Ek: -‘-z-m-dz o %__
van Heisenberg — % m
B °¥) o nht H licht E:hy¢ P' ’I —+ h
Axbp_)_-—_ n:-———- !'I:8 L?. . 2 /l:_. P:rﬂU %
4y n m _ massa E‘imkf Pzmuv P

Quantumfysica

Hoofdstuk 19



—§19.4 +—1L. Je kunt rekenen aan het deeltje-in-een-energieput-model en voorbeelden noemen waarin dit model geldig is. | |

| | | | | | | | | | | | | | | | | | | |
Extra bordoefening 1g: Een langwerpig molecuul (lengte = 0,90 nm) dat als een 1D-energieput gemodelleerd kan worden heeft 5 mobiele elektronen

die vrij door het molecuul kunnen bewegen.

Pl

8 9.tjio

e

90| 10

a. Teken een energie-diagram waarin je laat zien hoe de elektronen over de energieniveau's verdeeld zijn in de grondtoestand van het molecuul (O
b. Bereken de energiewaarden die horen bij het bovenste bezette energieniveau en de twee niveau's daarboven. 2
c. Reken uit welke golflengte een foton moet hebben om het molecuul tot het bovenste niveau van opg. b aan te slaan. uitbreiding 2: g
d. Bedenk op welke mogelijke manieren het molecuul @ terugvallen naar de grondtoestand. meerdere elektronen in g—
4 de energieput. E
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—§19.4 +—1L. Je kunt rekenen aan het deeltje-in-een-energieput-model en voorbeelden noemen waarin dit model geldig is. | |

| | | | | | | | | | | | | | | | | | | |
Extra bordoefening 1g: Een langwerpig molecuul (lengte = 0,90 nm) dat als een 1D-energieput gemodelleerd kan worden heeft 5 mobiele elektronen

die vrij door het molecuul kunnen bewegen.
a. Teken een energie-diagram waarin je laat zien hoe de elektronen over de energieniveau's verdeeld zijn in de grondtoestand van het molecuul
b. Bereken de energiewaarden die horen bij het bovenste bezette energieniveau en de twee niveau's daarboven.

ICa

c. Reken uit welke golflengte een foton moet hebben om het molecuul tot het bovenste niveau van opg. b aan te slaan. vitbreiding 2: meerdere | ;1
d. Bedenk op welke mogelijke manieren het atoom van deze aangeslagen toestand kan terugkeren naar de grondtoestand. elektronen in de -l
|
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| N T A T O N e S e ) | A
—§19.4 +—1L. Je kunt rekenen aan het deeltje-in-een-energieput-model en voorbeelden noemen waarin dit model geldig is. | ] |
| | | | | | | | | | | | | | | | | | | | | | | |
Extra bordoefening 1h: Van een langwerpig molecuul is achterhaald dat de fotonfrequentie | uitbreiding 3: =
van 3,64 x 10'* Hz hoort bij de overgang van een elektron in n =6 naarn=7. lengte vd e“e_[cg'eP“tdaﬂe;df" uit -
a. Bereken de energie die hoort bij deze fotonfrequentie. e — IS
b. Bereken de lengte van dit molecuul volgens het deeltje-in-een-energieputmodel. g
£
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_§19 i | L. Je kunt uitleggen wat bedoeld wordt met de golffunctie van een deeltje en je kunt m.b.v. een gegeven

golffunctie de waarschijnlijkheid bepalen dat je een deeltje op een plaats zult aantreffen.
| | | | | | | | | | | | |

Extra bordoefening 1i: Bekijk de golffunctie Extra bordoefening 1j: Bekijk de waarschijnlijk-
hieronder. Schets de waarschijnlijkheidsver- heidsverdeling hieronder. Schets een mogelijke
deling bij deze golffunctie. golffunctie bij deze verdeling
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"Welke verschijnselen waren nog onverklaard in 19007"
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"Hoe zitten

A HISTORY OF THE ATOM: THEORIES AND MODELS

— atomenin —
elkaar?"

Dalton drew upon the Ancient
Greek idea of atoms (the word

Michhoubd corpuulu‘}h
atoms in 1897, for which he won
a Mobel Prize. He subsequently
produced the ‘plum pudding’
maodel of the atom. It shows the
atom as composed of electrons

i COGMISE D ATOMS OF A PARTICELAR
FELEMENT DIFFER FROM OTHER ELEMENTS

throughout a spherical
cloud of positive charge.

RECOGMISED E LEC TROMS AS
COMPONENTS OF ATOMS

e MO NUCLEUS: DON'T EXPLAIN LATER
[EXPERIMENT AL DESERVATIONS

e ]
e o e
e L]

JOHN DALTON J.J. THOMSON ERNEST RUTHERFORD

CED J@ED G ED

fired positively
dnlg-dalplupmldn at a thin
sheet of goid foil. Most passed
through with little deflection, but
some deflected at large angles.

O olinu e meias o wirou

L o e

How have our ideas about atoms changed over the years? This graphic looks at atomic models and how they developed.

SOLID SPHERE MODEL PLUM PUDDING MODEL NUCLEAR MODEL PLANETARY MODEL QUANTUM MODEL
L ]

o

NIELS BOHR ERWIN SCHRODINGER

81 1913 W] 1926

Bohr modified Rutherford's
model of the atom by stating
that electrons moved around the
nucleus in orbits of fixed sizes.

PROPOSED STARLE ELECTRON ORBITS.
EXPLAINED THE EMBSION SPECTRA OF
SOME ELEMENTS
MOVING ELECTRONS .uu-n-u
IIHW‘ THE NUCLEUS, MODEL
NOT WORK WELL FOR HEAVIER ATOMS

Schrodinger stated that
slectrons do not move in set
paths around the nucleus, but

in waves. It is impossible 1o
know the exact location of the
electrons; instead, we have
‘clouds of probability’ called
orbitals, in which we are more
likely to find an electron.

SHOWS ELECTRONS DOW'T MOVE ARDUND
THE MUCLEDS 1N DIEENTS, BUT IN CLOUDS
WHERE THEIR POSITION I UNCERTAM

STILL WDELY ACCEPTED AS THE MOST
ACCURATE MODEL OF THE ATOMW
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"Was de natuurkunde "af" in 1900?" i

oo Eisme | yechanica |

ICa

|
Maxwell's Equations Maxwell’s Equations i .‘V‘ C ;f 18 'b”NEWTeN’s mws gl |
Differential form Integral form = mmuﬂ | MNewton’s First Law Y = S 9
| The Laws of Thermodynamics | oo e e | £

unbalancad forca. =
IN OTHER WORDS...

0 Tw H H T [ Aoy carthat 18 sifing an a sidewalk will newar, aver | 1
~ mova unlass someona gwshes it bo start motion. Then % |
the tay car will nevar. evsr siop moving wnfil 2 force W = B
Energy can never be created or destroyed. stopst, -

Law of Inertla 7
Wewton's First Law == somatimas calad tha Law of Ineriia. Inartia
'3 an obects tenaency o raslst changes in metion. When a car
sreaks quickly, tia passanger & comelimes thiswn Tonard in
i el because his inedia i ying to kesg him gaing larand

|AE =q+w

2. The total entropy of the UNIVERSE
( = system plus surroundings) MUST INCREASE
in every spontaneous process.

AB vu % AS +AS

Quantumfys

‘Want 1o see Newtar's First Law in action? CRck on the ling balow:. -
At T Bl A P 8, SOy BEAry 2t 0493

:l_e;:(tAnn s Second Law [~ = ma-

IN OTHER WORDS...

To make an abject acoelerate, ar move, you have
e apply a force, The greater the mass of the —
ohbjucl, the mare leree nesded o make iL
accelerata. For this reason, a 50 kg rock is much

>0

system surroundings

3. The entropy (S) of a pure, perfectly crystalline o | R 3
OOMPﬂund atT=0KisZEROQ. (n0 disorder] —_— T Click o th ik Balo Lo hear ar[‘:ll‘::::mr:lo;x::;ui:Lr:::.[McLiuﬂ. —

h:iimyhigeampus. comilibrarg 43344
S, = 0 (perfect xil) | A e
10Hew 97 Entopsr & Free Energir (Ch 20) - lect. 2

IN OTHER WORDS. ..

For evary action, thera is an aqual and opposila ( -‘\\ |
16 reaction. ‘ ‘

Two children on skalaboards are standing side by . '
sida. The aclion takes place when ona child pushes k 1
the ather. The reaction is when both skateboards roll 1 r

in oppasile direclions.
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intensiteit in kW m 2 nm™! —

£ L=a) oo
(=] L= o

ra
l=]

temperaturen

|

Ain nm —

a Figuur 18.28 Intensiteitsverdeling bij verschillende
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TR 1T T
"Waar komt de naam "kwantum" vandaan?"
| | | | | | | |

ICa

3 8
‘.

a

spectral radiancy (W/m~/pm)
8 8 & 8

Classical theory (5000 K)
10

=
o o

Quantumfys

Spectral radiance (kW - sr=1- m=2 - nm-1)

Ultravioletcatastrofe

—Klassieke natuurkunde: "Volgens het equipartitieprincipe krijgt ~ —
elke resonante manier van trillen van de oscillatoren energie ter

—waarde van E = 3/2kT." Dichter bijA = o liggen zulke manieren

Hoofdstuk 19

(eigenfrequenties) steeds dichter bij elkaar.
! | | | | | | | | |
| | l [ [ [ [ | l l

Pragmatische oplossing Max Planck:

— Elke resonante manier van trillen kan alleen in vaste

| stapjes inamplitude toenemen. De energie per stapje n __ mono-atomairgas: | di-atomair gas:

E=nl>xkZil E=5/2%k*T

hangt van de frequentie af, volgens E = h*f
I I I I I I I I I I
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"Wat zijn kwantumcomputers?"




T
"Hoe werkt kwantum-dot-technologie?"
0.V )y oy

¥ uitworkbijlage

ICa

Qled-tv

In het scherm van een Qled-tv valt violet licht figuur 1
afkomstig uit leds op een laagje met quantum-

dots. Quantum-dots zijn kleine bolletjes met ' O
afmetingen variérend van | tot 20 nm,
gemaakt van een speciaal materiaal.

(=8 In figuur 1 staat een artist's impression van
één quantum-dot (opgebouwd uit atomen).
De quantum-dots absorberen het violette licht
waarmee ze bestraald worden en zenden
daarna zelf licht uit met een andere kleur dan

2]
>
G
=
=)
i
=
(C
-
@

— violet. —
Voor de werking van een Qled-tv zijn quantumdots nodig die blauw, groen | e
(S of rood licht uitzenden, De kleur van het uitgezonden licht hangt af van de ] | ' 4 K
grootte van de quantum-dot. Zie figuur 2. S Y e e e B
L |
— figuur 2 ] WY A BV R BY

invallend violet licht
}

quantum-dots o)

kleur afhankelijk
e van de grootte

blauw groen rood

Hoofdstuk 19

De quantum-dots in een Qled-tv worden met violet licht bestraald.

2p 6 Leg uit waarom gekozen is voor violet licht in plaats van een andere Kleur

BN EE




L g
"Wat is Schrodingers kat?"

RODINGER'S
SCRTRS INTO & g

)| &

Hoofdstuk 19: Quantumfysica

SCHRODINGERS CATIS |
AILAVIE
| | | | |




"Wat is het Heisenberg onzekerheidsprincipe?" A
| | l. | I_ _I .I | S ! ! ' I I ! ! | | | | | ‘

know Too much |
t home with I can’t You probably :
A ‘n‘l'hee l find my dbout their momentum, T DUR MOMEN

Heisenbergs car Keys. \ F
p———— EPR—— a— \I

.ﬁ, N "-';‘1 I =I|H|.

i L | -
Inpl . d &[5 10
Lh ;:"-‘fe —r Ax AP Z 4T

! } } } } } } orzekecheld torpuls vk deettie Gordon Ramsay demonstrates
e ——r— e —— ) PN th'e Hemenberg Uncertainty
| KNoW YOUR LDCATION. KNOU YOUR MOMENTOM. M‘m = R Principle =
Bl o o oy
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"momentum" = impuls —




~ "Wanneer gedraagt een elektron zich als golf en wanneer
gedraagt het zich als deeltje?"
O O O O A

Hot cathode

Graphite
Target

Y
Fa

Electron Beam

— L = Distance Graphite to Screen

Hoofdstuk 19: Quantumfysica
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I s o ' e | oy |
“Hoe werken elektronenmicroscopen?”

Quantumfysica

& N

These images of sugar and salt crystals were shot using a
Scanning Electron Microscope

TECHNOBYTE.ORG

Hoofdstuk 19




~"Waarom kon de klassieke natuurkunde

-~ de bouw van atomen niet verklaren?"
|

01

3
+q, . -9
® ¥

\}”

| Animatie Dipoolantenne (wiki) H

Hoofdstuk 19: Quantumfysica
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"Wat zijn kwantumcomputers?"

Cooling and pumping Microwave and RF
laser beams electrodes

“Ca‘*ions

Phosphorus atom S g DC electrodes

10um

S— OO

Hoofdstuk 19: Quantumfysica




computers extra goed geschikt?"
s e P

| |
"Voor welke soort rekentaken zijn kwantum-

Primary Pratein

Sequence of a chain
of amino acids

Structure of Proteins

Ppleated f-pleated

v Al

Secondary Protein Tertiary Protein Quaternary Protein
Structure Structure Structure 1
Local folding of the three-dimensional protein consisting of
potypeptide chain into {olding pattern of a more than one

helices or sheets protein due to side amino acid chain

chain interactions

| | |

LIPPENS H H L, Burg Tellegenstr4 . .
LIPPENS J, Hagedoornw 39 .. .. ... .
LIPPENS J F B Surinamepl 84 .. ...
LIPPENS M, J v Lennepstr267......
LIPPENS M, Le Mairestr3,.......
LIPPENS M C, Deymanstr 10 ... ...

Privé, Linnaeusk 13 . i e
LIPPENS P F, Paltrok 42
LIPPENS R, Taxi=ondern, Rustenburqer-

.......................

rst
LIPPEN LA GROUW JE, Crmssensl.r :

LIPPERS B J, Leenhofstr 71 ., ... ..

LIPPES D, Hoogte Kadijk 62 ,

LIPPES H’ J E, Mont 'Grafis:he 'Mach h
vh P v Dijk NV Dr Colijnstr 102 .

LIPPES J H M, Nedersticht 311 . ...

LIPPINKHOF J, KatrTﬁtr 55 [ S 1 2

13 07 80
42 64 95
271595

75273.

3750871%35

588 = 2%2.3.7?
I i

ICa

Quantumfys
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S S N S (S (SN CAN O (AN I 1N S N N N O T N
“"Hoe kunnen qubits data opslaan?”
T R O N O
klassieke computer kwantumcomputer 3
3| bits (eerl'u o of een 1) | 3 qL;bi’csI (eerlw su;ljerplositile varlw o) eln 1) q;_l
=
- ir s _; _: . _E
(O
o o0 O GO o o 3
o © 2 1 Ty O &
— Met een 3 bits geheugen O @) (:3 O C :
— kun je 8 verschillende O Met een geheugen C‘q O 3
 waarden maken waarvan ! s P van 3 qubits kun je ~ ) -
je er 1tegelijk kunt 3 :i 1 een serie van 8 :‘5 \ © e "-g
il opslaan. " ~/ b waardin opslaan. ::6 \ o) o
ERELANENYLRIEDLANREL =
| T [ E T “3 )\ R




AV I R 2 v S naE NG, R ORI

I e a a — I ||i_|L|||||_k_|i

Control voltages for piazotube .

Repulsive force
experienced

trodes

Tunneling Distance control
rrent amplifier  and SCANMINgG unit

i F ol \alfaverval —— |||}
I 1, c) :1 35 cume i s
I\\ f-'_ 'I-ﬁ.._ 1 \f

Piezoelectric tube
with eled

?‘”‘

i distance
Attractive force

experienced

Data processing
and display {

Quantumfysica

e scanning-tunnelingmicroscopie
| |

| | | | |
e 3

kernfusie in

sterren

(o))

i i
B

L] o |
i & -
Z = o <

[ S (@]
f =




| | | | | | | | |
verbeterd worden

|
pLl

[ | | | | | | | | | | | | | | | | |
Moore’s Law — The number of transistors on integrated circuit chips (1971-2016) SESEE
b he empirical ularity that the n wer of Lr 5 on int ted cir s doubles app nately eve NO Y -

~ "Hoe ver kunnen klassieke computerchips nog

nData [,

[

16 billion

transistors

propassor

Faster CPU

Quantumfysica
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~ "Wat wordt bedoeld met (Laplaciaans) determinisme..." |
]

Hoofdstuk 19: Quantumfysica

o 4 - . n Y]
..4\_-1_’_?‘ SN L) onz, _ 134
S g ;i\; | ijerh?fd . ,.} JH, . 5 2?5 - {o
o AR 51 = =
5 kh ”s,!,e ~ | BX AP - y1r
T=De N
Bs onzerecherd mpuls| V. deettye
" "Volgens het onzekerheidsprincipe van _en hoe maakte
i DEMC —  Heisenberg kun je niet pr‘ec:'es weten kwantummechanda
waar een deeltje zich bevindt en welke - =
‘ snelheid hetI hee}lct. ! | daar elen ?mC{e a(|1 ‘ |




eaIsAjuniueny :eT )NISPJOOH

?H

icroscopen

"Hoe werken elektronenm




6T > n3spjooH

ed1sAjuwniueny

kwantummechanica

"Onopgeloste kwestie: hoe zijn kwantummechanica en relativiteit te

i) »

¥
- o

" Kleine dingen:

betwean nucleons

between quarks

Strong Interaction

kwantum en relativiteit
beide tegelijk nodig voor
Mhet verklaren van zwarte

gaten en de oerknal §
g E Tt

verenigen tot een theorie van alles?"
|

relativiteit

L (zwartekracht)

grotedingen: |

Relativiteit

Hoofdstuk 20



"Welke dagelijkse verschijnselen zijn alleen met

kwantumtheorie te verklaren?"
| | | | | | | | | | | | | | | | | | | | | |
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?H

"Wel{<e natuurkunin staan er op eze to




L] ]
o v B I
"Hoe komt quantumfysica terug in het CE?

ICa

Omdat de elektronen in Sirius B zo dicht op elkaar zitten, is er een
vereenvoudigd quantummodel opgesteld: alle elektronen van Sirius B )
bevinden zich in een één-dimensionale energieput met L=58.10° m_

I €en gigantisc
atoom. Net als bij een gewoon atoom kunnen niet alle elektronen
hetzelfde energieniveau bezetten: hoe meer elektronen er zijn, des te
meer energieniveaus bezet zijn. Voor het quantumgetal » dat hoort bij het

hoogst bezette energieniveau van Sirius B geldt: n, =8 4.10'8
De elektronen zijn in dit model te beschrijven als golven met een

2]
>
G
=
=)
i
=
(C
-
@

=
debroglie-golfiengte waarvoor de formule geldt: Ag= :£
n

14 Voer de volgende opdrachten uit:
- Leid deze formule af.

- Bereken de minimale debroglie-golfiengte van elektronen in Sirius B

= Leg daarmee uit dat Sirius B terecht beschouwd wordt als een
quantumsysteem,

Met het quantummode| zijn rnodel-energie-berekeningen gemaakt. De

resultaten zijn weergegeven in figuur 1. Deze figuur staat vergroot
weergegeven op de uitwerkbijlage.

Ek.Q de quantumfysische figuur 1

Hoofdstuk 19

kinetische energie. 80
Deze is gelijk aan
de som van de E o L
elektron-energieén (.10¢2)) \
40 )
van alle gevulde ! . Eo
energieniveaus. e <
E, de gravitatie- =
energie. 0 \\
E,, de totale energie. ™54
= . o ¢106m)
s 4 —r m
Er geldt: w“ -"'\L | |




=

3p

K, zie figuyr 4) neemt de klassieke’
thermische €missie snel af en vindt er alleen nog emissie via het
tunneleffect plaats.

Voor de debrogﬁ&golﬂengte van vrije elektronen in €en metaa| bij een
temperatyyr geldt:

-8
; _7.45.10 :

i
T

24 Voer de volgende o

Pdrachten yit:
a met een schattin

- in h
"Hoe komt qUantUmf)/S’.Cq t|er|.U|g |

et CE?"
|

ICa

2]
>
G
=
=)
i
=
(C
-
@
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Deze reactie vi

ht_at cu:mer\;fa:alt\‘r\.'rl;?]t o

;n;gr;:_c:_;ptsche Stofdeeltjes
I Ismantels om de

;tnfdee!_tjes worden gevormg

bi:.\g:,zbu veellreacties moet o.ok
€ reactie een

acti veringsenergie £

overwon 3

Zie ﬁguu?efr.] s

Over deze 1

reactie zijj
theoriegn opgesteld i
= theorie 1 .

H:0 +H

van _de betrokken
gemiddelde the,
theorie 2

deeltjes. Bjj
rmische energi

wee
aegeven als functie van :

figuur 2

N (P
F(K™)
008 010 0,12

"Hoe komt quantumfys
SR =D

—

T
ica terug in het CE?"
U U I |

over theorie 2
Als een H,-deeltje en een OH-deeltje zich voldoende dicht bij elkaar aan

het opperviak van een vast stofdeeltje bevinden, kan er een reactie door

het quantum-tunneleffect plaatsvinden. In deze reactie “‘verhuist’ een
H-atoom van het H -deeltje naar het OH-deeltje, over een afstand

a=10"m

Voor deeltjes met een massa m geldt voor de debroglie -golfiengte / in een

omgeving met temperatuur 7 b

h

= :|.|21rkaT

Hierin is:
- kg de constante van Boltzmann,

- h de constante van Planck.

n deze formule en met figuur 1 uit of er onder deze

9 Leg met behulp va
antum-tunneleffect.

omstandigheden een redelijke kans is op het qu.

Wetenschappers onderzoeken deze reactie in een laboratorium. Ze

vervangen daarbij alle waterstofkernen {iH} door deuteriumkernen

{iD = {H). Dit levert de volgende reactie:

(2) OD+D, —»D,0+D

Voor reactie (2) zijn de hoogte en de breedte van de energiebarriére gelijk
aan die van reactie (1), zoals weergegeven in figuur 1. Maar reactie (2)
heeft een andere kans op het quantum-tunneleffect dan reactie (1).

2 10 Leg uit of de kans dat het quantum-tunneleffect optreedt met
deuteriumkernen groter of kleiner is dan met waterstofkernen.

Tim heeft moeite met theorie 2. Hij zegt: “In figuur 1 blijven de hoogte en
breedte van de energiebarriére constant, dus je kunt net zo makkelijk
‘terug-tunnelen’ en dan wordt het water weer even snel afgebroken.”

2 11 Leg uit of Tim gelijk heeft.

laneet mogelijk. In tabel 32H van BiNasS en in

Water maakt leven op een p
- ot meds hat warhand nensven tussen de

ICa

2]
>
G
=
=)
i
=
(C
-
@
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ﬂm’—, figuur 3b
- tweede

tijdvak

ICa

JE—

ntermne

—= golflengte (nm)

(a) stralingsloze
overgangen ‘"{‘ a0
T
S 7
50
E absorptic cmissie A0 >
30 (h
=
g 500 550 700 )
4+

rechts verschoven is.

het emissiespectrum naar

2 12 Leg uit waarom

ook beschrijven met een

Een RhudamineAﬁG-moiecuul. kan men
eenvoudig model van een eendimensionale energieput waarin
22 elekironen opgesloten zijn. Hierbij zijn een aantal energieniveaus o <
gevuld met twee elektronen per niveau. Samen vo rmt #
p (-.'
.

(n-waarden) steeds
dit de grondloestand (g)-

Als het molecuul door absorptie van een foton aangeslagen wordt, gaat

&én elektron van de hoogste bezette n-waarde naar de volgende )

n-waarde.
!ﬁ.- 22 —11%)-h
Dan geldt voor de lengte van de energieput: L= ___(l_é__l__)___
me

Hierin is:
te slaan,

is om het mole cuul aan

Hoofdstuk 19

i de golfiengte die vereist
_ h de constante van Planck;
m de massa van een elektron;

¢ de lichtsnelheid.

kend van formules uit een tabellenboek.

eid deze formule af gebruikma

P

Fiquur 4 geeft de structuur van figuur 4
- ccemmrda T 1,70 nm




T
"Hoe komt q

Om veilig gedurende een langere tid in de zon te kunnen liggen, kan men
zonnebrandcréme op de huid smeren. In zonnebrandcréme zit een stof
die fotonen met een bepaalde energie kan absorberen. Deze ensrgie
moet overeenkomen met een sprong in het energieniveauschema van de
stof.

In figuur 7 staan twee typen energieniveauschema’s weergegeven. De
linker figuur kent discrete niveaus. De rechlerfiguur kent twee groepen

ht op elkaar met daarfussen een sprong,

vantumfysica terug in het CE?"

de de ‘band-gap'.

figuur T

Energionivenu Energienivean

iy

Een stof met een band-gap is beter geschikl voor zonnebranderéme dan
een stof met een discreet energuenivemmcnema
Leg vit waarom

" ede zonnebrandcréme gelden twee specil
- De créme absorbeert het UV-B.

- De créme absorbeer! geen zichtbaar licht

In tabel 1 staan drie stoffen met een band-gap gegeven die in
zonnebrandcréme verwerkt kunnen worden. De stoffen worden in de varm
van nanodeeltjes toegevoegd aan de créme.

tabel 1
stof band-gap-energie (eV]
pallivmoxide Ga,0, 44
titaandioxide TiO, 33
zilveromide Ag, 0 L5

Slechis een van de stoffen in tabel 1 is geschikl als werkend bestanddeel
in zonnebranderéme.
% 18 Voer de volgende opdrachten uit:
= Leg uil, onder andere met een berekening, welke stof dat is
Leg uit waarem de andere twee stoffen niet geschikt zijn.

W SIZB TR0 1217 s verser bE

figuur 4

EpeVy [

geur-receptor

Als een elektron van donor D via een geurmolecuul naar acceptor A

beweegt, wordt er bij A een signaal afgegeven dat naar de hersenen gaat,
waardoor het geurmodecuul wordt waargenomen

Het model van Turin is een combinatie van quantum-tunneling en
energiecverdracht. Zie figuur 4 voor een schematische weergave

In figuur 4 bevindt zich een elektron in donor D in het aangegeven
energieniveau. Van acceptor A Zijn twee energieniveaus weergegeven
Zonder geurmolecuul kan het elektron niet van D naar A gaan.

Als een geurmolecuul dat past bij de receptor tussen D en A zit, kan dit

geurmalecuul energie opnemen van het elekiron zodat het elektron wel
van D naar A kan komen,

20 Leg uitin welke van de twee energieniveaus van A het elektron dan komt.

Een voorbeeld van een geurmolecuul  figuur &
is acetofenon. Zie figuur 5
De energie-uitwisseling met het

geurmaolecuul kan in een
vereenvoudigd model worden
beschreven, In dit vereenvoudigd
model wordt elke: C - H -binding van

het geurmaolecuul beschouwd als een
{quantumfysisch) massa-veer-
systeem. Fie figuur & voor de
energieput met de discrete

energieniveaus van dit massa-veer-
systeem voor een van de
C—H-bindingen van acetolenon
Voor de energieniveaus geldt:

E, =hftns)

Hierin is:

- E, De energie van niveay n;
-k De constante van Planek;
- f Defrequentie van het

afstand ussen alomen
C-{H-binding

massa-veer-sysieem

1“7

ICa
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>
G
=
=)
i
=
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-
@
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T e o v o A A e A
"Hoe komt quantumf{ysica terug in het CE?"  2°*

I tWeede

Elektronandiffractie In grafiet liggen de koolstofatomen in lagen op elkaar. In de afzonderlijke In figuur 4 zijn verschillende lijpen te zien waaraan reflectie plaats k t L dvak - —
lagen liggen de OMERN i 1 vinden. De afstanden tussen verschillende lijnen zijn aangegeven mi IJ
G.P. Thomson toonde exp | aan. Hij let zien —_ Het effect van elekironendiffractie vindt plaats binnen één laag en niet e d, en d,

dat er een interferentiepalroon ontstaat als elekirenen op een stukje vaste tussen de lagen. In figuur 2 is €én zo'n laag weergegeven.

stof geschoten worden, Hiermee toonde hij aan dat elektronen een
golfkarakier hebben. In 1937 ontving hij hiervoor de Mobelpnjs.

Bob en Marly gaan het experiment van Thomson uitvoeren met een
elektronendiffractiebuis. Zij willen daarmee de afstanden tussen de
atomen in grafiet bepalen. Zij gebruiken de opstelling die weergegeven is
in figuur 1

figuur 1

[ 1 —fosforscherns
]
Y

10KV clekinaen intermemtieringen

oy

D levert . Deze hebben een
verwaarloosbare snelheid. De elektronen doorlopen een versnelspanning
die variabel is tot 10 kV. De elektronen gaan door het stukje grafiet,
waama ze op een fosforscherm een interferentiepatroon geven. Dit
interferentiepatroon kan worden verklaard doordat de elektronen een
golfkarakier vertonen

In een laag bygen de atomen in evenwijdige linen. Aan deze lijnen vindt
reflectic plaats, de zogenaamde Braggrefleciie. De elekironengobven die
ter van de i idige lijnen hebben een verschil
in weglengte waardoor ze interfereren. Dit is schematisch weergegeven in
Tiguur 3

figuur 2 figuur 3
aE BE B we ww
- as - -e
-w -e -
. ww .
.
.

- - -
L)
D) s ® ;
s e e
- - -

e a8 wE aw
Er treed! constructieve inlerferentie op als
2dsine=nid met n=123, 2

Hierin i5:
- d de afstand tussen de roosterlijnen;

Bij een interferentiepatroon aan een monokristallijne laag grafiet (dat wil
zeggen een laag die uit één kristal grafiet bestaat) ontstaat het patroon
van figuur & op het scherm van de elekironendifiractiebuis uit figuur 1.

figuur 4 figuur 5 figuur &

Als er in de geen allijve laag graliet zit maar een
polykristalline laag (dat wil zeggen dat er vele knstallen kriskras door
elkaar zitten), ziet het interferentiepatroon eruit als in figuur 6

Leg uit of de buitenste nng komt van interferente aan lijnen met afstand
d) of met afstand 4,

Bob en Marly meten bij verschillende versnelspanningen de straal van de
ningen op hel scherm.

2]
>
G
=
=)
i
=
(C
-
@

@ de hoek waaronder de elekironenbundel de roosterlijn treft;

- J de debroglie-golfiengle van de elekironen Bij lage versnelspanningen verachijnen geen ringen op het acherm

Vioor de debroglie-golflengte van de elektronen geldi: Dan is alleen de stip in het midden op het scherm te zien.

Figuur 3 staat ock op de uitwerkbijlage
h {1} _ - » . o _ 2 19 Leg uit waarom bij lage versnelspanningen geen ringen verschijnen op het

o 2emU7 scherm

& 17  Woer de volgende opdrachien uil:
—  Geef op de vitwerkbijlage het verschil in weglengle tussen de twee

Hierin is
- h de constante van Planck; stralen aan
- ¢ de lading van het elektron; — Leid hiermee formule {2) af = o

Hoofdstuk 19

= m de massa van het elektron;
= U7 de versnelspanning.
Leid formule (1) af. >7 I
2 16 Bereken de debroglie-golflengte van de elektronen nadat ze een "
versnelspanning van 5,0 KV hebben doorlopen

W2 182 /s lees verder v B VI3 19 3 1115 wun vardar ba b W12 11 12115 e varder &b




~ "Hoe kun je je de mogelijke golffuncties van elektronen in
I8 waterstof voorstellen?"

Hydrogen Waw

" 0

c =
-
-]

(320
-
-
O
-

-
-

- a®s 3
‘y
\1J
E’,.O

.
®
.,
|
Hoofdstuk 19: Quantumfysica




oe kun je kijke

| | | | | | | | | | | | | | | | |
n waar het elektron is?" f
R A — —— —

" # P s 4
fotomultiplicatorbuizen

IIIH

Quantumfysica

Sethooe) Electirons l

ov +200V +400 V +600 V
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~ "Welke experimenten tonen aan dat hcht een golfkarakter heeft?"
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De maxima liggen verder uit elkaar als
| ‘ ‘ ‘ ‘ a Figuur 19.11 Het tweespletenexperiment de verhoudi ng A/d groter is. q‘
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~ "Welke experimenten kun je doen die kwantumgedrag bevestigen?"
e e e e e S L B O B

uit~deeltjes !
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~ "Hoe ziet de "lege ruimte" er uit op het kleinste niveau?"
] | EEE | = -

m
positiv thgd

'Nueteusy @
positron. l .

Photon

modern klassiek
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~ "Hoe worden in het standaardmodel de krachten overgebracht?" |

between quarks

Jreen-

antiblue

gluon

Strong Interaction
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"Voor welke verschijnselen volstaat de straalbenade
|

1. Shadows: Point Sources

* A point source is such a small light source that
it can be considered a point. All light rays
depart from that point.

| | | | | |
2. Shadows: Broad Sources

e
ring van licht?"
|

ot

Penumbra

Golven
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 "Voor welke verschijnselen is de golfbenadering van licht nodig?"

breking

e,
3

Rebecca Slater
o "Lo#9

dispersie

- ¢ R e

verstrooiing o i SR interferentie §

Golven
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mterferentle veroorzaakt7”

Singl slit pa lt arn

Double-slit pattern

Incoming Ambient Sound
(Plane-, train- or bus engine)

2
Sound is picked up by microphone
— and sent to noise cancellation circuitry

"Welke verschijnselen worden door

eeeeee

ANTI REFLECTIVE COATING

UNCOATED GLASSE

Rebec a:;hter
= Yok

Golven
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"Welke meettechnieke

||
ken

gebruik van interferentie?"

coherant
light source

eeeeeeee
mirrar

A interferometer
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De volgende dia's zijn de aantekeningen die je in de les overgenomen hebt. Alles wat hier tussn de

rode lijnen staat zou ook in je schrift moeten staan. Dit is de essentiele stof voor het proefwerk en

deze moet je proberen volledig te begrijpen. Je vindt hier ook de tekst bij de bordoefeningen

waarvan je als het goed is alleen de uitwerkingen hebt opgeschreven.
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§ 19.1 De aanloop naar de quantumfysica —

o

1 T T A 1 4 Y

lijnenspectra en de stabiliteit van atomen kon verklaren:

|
1. Niels Bohr kwam als eerste met een atoommodel dat \

® Elektronen worden bij de kern gehouden i — +q, o =
door elektrische kracht (.ridfiL-/_) F;£= £.q- cLz N . 'e
e Elektronen kunnen alleen in banen met bepaalde (2

vastliggende baanstralen (r) rond de kern draaien

volgens: h
201 WIQU- = NN & constante v.
baonstraal A j Planck ‘ — ‘
baanﬁeta\ (\,2,3,.-) 6,626- 1641 s ==
AHISTORY OF HE ATOV: THEORIES AND MODELS
o Elektronen kunnen overspringen van een lagere 2 ) h-¢ | s s:zmgmsam T eI e

baan naar een hogere baan en terug waarbij een

foton wordt geabsorbeerd of uitgezonden (hfd 12). | | | QW 3 N _




o

El
[
o)

-2
aangeslagen toestand

energie in eV —

-10 4

-1z 4

grondtoestand

-13,6 -0 n=1

& Figuur 12.37 Energieniveauschema van waterstof

Elektronen kunnen alleen

in banen met bepaalde
vastliggende baanstralen

(r) rond de kern draaien.
| | | | | | |
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—§ 19.1 De aanloop naar de quantumfysica —

Cloud of gas

Bright line spectr

Continuous spectrum

| Bordoefening 1a. Bereken van welke
-—golflengte een foton wordt uitgezonden -
door een waterstofatoom dat vervalt van
de 2e aangeslagen toestand naar de eerste
| aangeslagen toestand.

Elektronen kunnen overspringen van een lagere /
baan naar een hogere baan en terug waarbij een _ E rotan = | -4 eV - + 1, ¢ Q_\/
foton wordt geabsorbeerd of uitgezonden (hfd 12).
-3 o = |19 e\j =
(}_ h-¢ 6{62_6-(0 al 3, _—08 6 4 0:1‘ 6 (1 'J lq eV
| ST - : J 9 nnn = ' -
E 309 167! ’ = 3 O%- 10 :




Ne=x
'\-—
ne=3

o

|
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——§ 19.1 De aanloop naar de quantumfysica —

e aangeslagen toestand
e

T n=2 (-34ev)

energie in eV —

Cloud of gas

-10 4

/, 136 Mtoestand i
'.3 0 i 2.37 Energieniveauschema van waterstof
-
!

eM | | | | |
) T

. Bordoefening 1c. Bereken de maximale |
golflengte dat een foton nog mag hebben
—zodat het een waterstofatoom kan T

T T T T Ayyqt 86 P
_ | Bordoefening 1b. Zoek in binas op van

welke golflengte een foton wordt
uitgezonden door een waterstofatoom dat

aa
2e aangeslagen toestand

Je aangeslagen toestand

| _aanslaan vanuit de estand naar | lonisatle | | de 3 | d | |
de toestand met n = 4. Gebuik informatie . Figuur 12.38 [ Eeldndniese s eSS dEC oS S
| bo_rdTJagina o - naar de eerste aangeslagen toestand. | |
_naderhand in Binas 21A op of je de juiste | | _A,$ - -0,6, V. _ 1,6 eV
waarde gevonden hebt. = ’ o
a 123 eV = 2030 ]
NG 66601 1 103 g
A= =il - s 20,810/ m = 98 nm
= 2,031




A

57)

Hoofdstuk 19: Quantumfysica

=<

§ 19.1 De aanloop

™~
Tl

3

2 a Stel de middelpuntzoekende kracht op het elektron
in het bohrmodel gelijk aan de elektrische kracht en

%

leidt hiermee af dat

N

LN

waarin rde straal van de baan is,
m. de massa van het elektron,
v de snelheid van het elektron,
n het baangetal (n =12, 3o,
h de constante van Flanck.

Gebruik de quantisatieregel van Bohr om af te leiden

e R é:w

¢ Combineer a en b en leid af dat
) Anfe

Fn = A T en Yy =
1 4n2mcf€2 € n

d De totale energie E, van een elektron in baan n
wordt gegeven door de formule

rm,

E,=>myi——

e quantumfysica —

~

Leid hieruit af dat:
_ _ 2’m.fe

~

e Laatziendatr =5,26-10"menkE,




(v

rﬂ

F— nh ; 5
) mpz ~ el . Hoofdstuk 19: Quantumfysica
a ~ - N r.1 =
2 v Trw 19.1 De aanloop naar de quantumfysica —
~ mur_jlct."‘lz i .l ¢ - §| | | | I:|J | |q| | f|y
a f = 2 resultaat: een )
’ l (2 nh formule waarmee je 2 a Stel de middelpuntzoekende kracht op het elektron
a2 de baanstralen van in het bohrmodel gelijk aan de elektrische kracht en
= gelyj
\ Lf‘l ke .P -2 - 11 2 rl m: het elektron in een leidt hiermee af dat
- y waterstofatoom kunt
- T uitrekenen. 2 _ fé
\ m b2
N ) e meF
2 % b Gebruik de quantisatieregel van Bohr om af te leiden
A |2 2) 2 n’ & \
‘ B 4 ¥ n r i o i 2mrm, v =nh ="n’h" \ 5
- Lol L ¥ e ade - } od!
. —— - [ . - L arin 1 raal van de baan is, “
7 T m m 't e r:edithssava:he‘telektron. ¢ Combineer a en b en leid af dat 6
m p t‘l ( fvl > vde snelheid van het elektron,
- N n het baangetal (n = |1 1.'3(---)- —— nzkz 5 4n2fie4
onstan n Planck. . T T =35
AT T Amm e " VT
2 2 d De total i | i
. r~ e totale energie E, van een elektron in baan n
"{\ ¢ l} -€ n h"\ f\h wordt gegeven door de formule
- - e - - eZ
M o — < m < E,= xmwi - fet

ik

=~

resultaat: een formule waarmee

Leid hieruit af dat:
_ 27°m.fe*

' je de snelheid van het elektron in
de verschillende mogelijke banen

Ey =

n’h?

kunt uitrekenen.
i ; | | —
I |

=526-10"menk =136 eV.

\ e Laatziendatr
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—= 2 J aq 19.1 De aanloop naar de quantumfysica —
= : qr-m- ¢° / nn " %z §| e e e f|y |
| ,/ |
. 'F"W"q,: 2 a Stel de middelpuntzoekende kracht op het elektron
. N - 'EE 3 [ in het bohrmodel gelijk aan de elektrische krachten
2 H.¢e (2 leidt hiermee af dat

e | ; =
E" = -ému’, | a4 et

M

b Gebruik de quantisatieregel van Bohr om af te leiden

F d t 2 thl Zaem, v = nh
» atv,” = 7 R
Y F B 2 4].[ me ¥ waarin  rde straal van de haan is,
m. de massa van het elektran,
J ZTF{Z e o ¢ Combineer a en b en leid af dat e e e
i : e m e n 21,2 4 N de constante van UIalqék_mh
T IN ! 5 o B AR
N oo Fn d’m. fe* " Vi 2h2
Rl L d De totale energie E, van een elektron in baan n
4 =1 [ wordt gegeven door de formule S
s L2 2 r 2 1 g
xtra inzicht: — m 4y e L e | C il E.=>myvi— f—
bsolute waarde van = - L \ Fa
. 3
celomed: |l N nth R S T N N T SR NN B
otentiéle energie is = t n | | | | | | | | | |
wee keer 7o groot |
Is die Vr?" de / 2 11 4 = Leid hieruit af dat: o B
inetische energie. ] .
y 68 M 4T ’G \Q i{'.‘\ 2mm. [ e’
t — ‘ & Figuur 12.38 = E,=- 2 h? ]
(En 2 2 bt L
\\\N “ A resultaat: een formule waarmee je de totale energie van het elektron —— e Laatziendatr, = 5,26 -10"menE, = —13,6 eV. o E—
[—— I / ineen bepaalde baanin een waterstofatoom kunt uitrekenen. | | | | | | | | |
| | | | | | | | | |
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§ 19.1 De aanloop naar de quantumfysica —
| | | | | | | | | | |

—_—t

-

2 a Stel de middelpuntzoekende kracht op het elektron

in het bohrmodel gelijk aan de elektrische krachten

" leidt hiermee af dat

1l
M

~N

o~

] W‘ 2=“f‘e2 |

v
M

o

b Gebruik de quantisatieregel van Bohr om af te leiden

J

21.2
d t 2 H'h' 2mr, v = nb
v =g7-73
" Anmery _ _
waarin ¢ de straal van de baan is,
. i m.de STiagEs rar] het elektran,
¢ Combineer a en b en leid af dat e
- - i de constante van Mlanck.
n’h’ ,_ 4n’f%e
Fn =z T2 ONVy =— 575 —
n 4n2mcfel € n H2h2

d De totale energie E, van een elektron in baan n
wordt gegeven door de formule —

g

B, ek gl

i=5mcvﬂ—— —_

™~

rﬂ

I

Leid hieruit af dat: —_
__2m@mf

e
o

-

i

EH' - n2h2

e Laatziendatr, = 5,26 -10"menE, = —13,6 eV. S
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N

o

3 Het bohrmodel is zowel bruikbaar voor atomair

waterstof als voor eenmaal geioniseerd helium.

h').

-lw hﬂ

a Leg uit waarom een model voor atomair waterstof
waarschijnlijk ook goed werkt voor eenmaal geioni-

seerd helium.

§ 19.1 De aanloop naar de quantumfysica —

P oy

b Leg uit dat de energieniveaus van eenmaal geioni-

N

(4]

seerd helium een factor 4,0 verschillen met die van
atomair waterstof, en controleer in Binas of dit klopt

w L

voor de ionisatie-energie.

"

n

¢ Wat verandert dit aan de formule voor r?

d Bereken de baanstraal van het elektron in de

o

-1q grondtoestand van eenmaal geioniseerd helium. —
e Leg uit wat groter is, een helium- of een waterstofa-

toom.

2|12 £-L ( |
n'n m H pt +
7 o - '@ " Pl e el
(= 8y 2 .o wordé Ze-le ¢ et °¢ ot | °¢
i i |1 LI F P
ATk s
A H &1-} I Dpesiotinic "onisier:l
o 3.10 : e\ c
T-o | le\‘ﬁe”-qr‘ ) l ‘“_+ 2' 4 L] | T N‘ium
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1 (vervolg). Louis De Broglie bedacht dat de gekwantiseerde banen van Hoofdstuk 19: Quantumfysica
Bohr te verklaren waren door het elektron als een golvend iets voor te

§ 19.1 De aanloop naar de quantumfysica —

..

m. de massa van het elektron,

stellen. Alleen banen waarin een staande golf ontstaat zijn mogelijk. e ——
| | I | | | | | | | | | | n z | | | | | |
‘P o 2nrm. v = nh
il o
| ee waarin rde straal van de baanis,

v de snelheid van het elektron,

N

4 H - a \ n het baangetal (n =1,2,3..),
g F\e — h de constante van Planck.
\ Lo

st o

M .‘r\ ‘ y (Tl (zie paragraaf 19.2)

M ;t&'h DeBroglie-golflengte

van deeltjes

i

A D

Ps

‘ Cirkelgolf ‘ ‘ ‘ ‘



C =)

N

8|

Opdrachten

4 Volgens het model van Louis de Broglie draait het elek-
tron, net als in het bohrmodel, in een cirkelbaan om de

atoomkern.
a Leg uit dat in zulke banen de mogelijke golflengten

27| =

/» moeten voldoen aan

_ 2mr

-

L W=y

b Als de golflengten bovendien voldoen aan:

P A= ,,f; <=—§lj')_

volgt uit deze formule en de formule uit vraag a dat:
2mtrmv = nh (de quantisatieregel van Bohr)

Leid dit af.

Hoofdstuk 19: Quantumfysica

§ 19.1 De aanloop naar de quantumfysica —

De kennis voor opg. 4b leer je pasin

paragraaf 19.2. Daar leer je pas voor het

eerst officieel dat p = mvendatA=h/p

| = b Prm-J

7~

D .




2. Het blijkt dat elektronen helemaal niet voorgesteld kunnen worden als
balletjes die rond een kern draaien in cirkelbanen (zoals in het Bohr-model).
In het kwantummodel van het atoom is er alleen een kansverdeling om het

| Hoofdstuk 19: Quantumfysica

—§ 19.1 De aanloop naar de quantumfysica —

elektron ergens aan te treffen als je het zou proberen te detecteren.

Hyarogen Wave Function

Probability Density

.

nagn

g(n—1-1)
= (J

2nl(n+1)!]

2l+1

l

)

r/nay [ 2r
Ty

) FLH

"L":.-Tnf m {! r 0, (3 ) - \"IIIIIII (

NOTE:

1. The distance between two major ticks in the plot is 5ag.

2. The numbers in the brace are the three quantum numbers (n. I, m
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2. Het blijkt dat elektronen helemaal niet voorgesteld kunnen worden als — Hoofdstuk 19: Quantumfysica

balletjes die rond een kern draaien in cirkelbanen (zoals in het Bohr-model).

In het kwantummodel van het atoom is er alleen een kansverdeling om het

—§ 19.1 De aanloop naar de quantumfysica —

elektron ergens aan te treffen als je het zou proberen te detecteren.

Hydrogen Wave Function

Probability Density

L1l
3.2, 0) 3.1, 1} 3
T T T T

1.1 1. 1.0
T ™rTrrrrrT TTTTTTTT

. s

4.1, 1) 4.1, 00

In het kwantummodel van het atoom is het elektron dus niet langer een balletje

dat rondjes draait om een kern, maar is het simpelweg een wolkje van kans

genaamd een "golffunctie". Daar waar het wolkje een grote waarde heeft is de

kans om het elektron bij een meting daar aan te treffen ook groot.
S N A N S T I T O




plotseling als deeltje.

2 (vervolg). Het blijkt dat vrije elektronen ook niet voorgesteld kunnen
worden als balletjes die van A naar B vliegen. Ook vrije elektronen moeten
met hun golffucntie voorgesteld worden. Hierdoor is onbepaald waar het
elektron op een gegeven moment is. Pas als je het elektron probeert te
detecteren "stort de golffunctie in" en manifesteert het elektron zich

/

J Graphite
Target
>

1
= 1 N
'l ’
i.— Electron Beam

Hoofdstuk 19: Quantumfysica

elickeoren 9ed %4 I j‘;:r als
zich \hiec als 9o\f ... e
Hot cathode ' /)

i

(want je "kijkt" wel
waar het atoom is)

WV

¥=A cns[

for electro

wavefunction

n _____Using the deBroglie relationship

“w2m  23p P =electon

2_![{ P ] i h momentum
A Using the Planck relatonship i
ho E F = electron
~w= = energy —

h h




2. Het blijkt dat elektronen helemaal niet voorgesteld kunnen worden als
balletjes die rond een kern draaien in cirkelbanen. In het kwantummodel van |

Hoofdstuk 19: Quantumfysica

—§ 19.1 De aanloop naar de quantumfysica —

het atoom is er alleen een kansverdeling om het elektron ergens aan te T

Hydrogen atom

treffen als je het zou proberen te detecteren.
| | | | | | | | | | |

0 0.5 1 1.5 2 2,5
rin ag —

2 4 6 8 10 =
rinag—»

% -2

o [ -10 -8 -6

a Figuur 19.3 De waarschijnlijkheid per volume-een- ¢

heid van een elektron in de grondtoestand van het

H a Figuur 19.4 De waarschijnlijkheid om het elektron aan
-atoom

te treffen op een afstand r van de kern.

3
e .

In het kwantummodel van het atoom is het elektron dus niet langer een
balletje dat rondjes draait om een kern, maar is het simpelweg een il

wolkje van kans. Daar waar het wolkje een grote waarde heeft is de kans

om het elektron bij een meting daar aan ie treffen ook groot.

e
-

¢<|d|'mé kans !




| | | |
q_|T:L o | | | %}‘h N e S | Hoofdstuk 19: Quantumfy5|ca
0,25 Rt v -y . £ . 4= e i R il . - =
02 N — § 19.1 De aanloop naar de quantumfysica —
0,15 o
2 2,5 R B £reem|
rinag— o0 ] :
a Figuur 19.3 De waarschijnlijkheid per volume-een- — 0 8 6 4% -2 0 2 4 6 8 10 - —
heid van een elektron in de grondtoestand van het A A
H-atoom | | | . Figuur 19.4 De waarschijnlijkheid om het elektron aan | |
te treffen op een afstand r van de kern.
kans AP om het elektron aan te treffen ineen | | | kans AP om het elektron aan te treffen ineen | | |
blokje volume van grootte AV op een afstand r schil met dikte dr (oneindig dun) op een afstand
van het centrum | | rvan het centrum - —
|| \ 7 ] _
Loomy
— e b oy g ] _
K
Geintegreerd over =8%etT = oneindig moeten
Geintegreerd over de hele ruimte moeten alle ||| alle beetjes AP opgeteld samen 1 zijn. Dat is
beetjes AP opgeteld samen 1 zijn. Dat is omdat omdat het zich zeker op een afstand r van de
het elektron zeker ergens in het heelal is. [ 1] kern bevindt, hoe groot deze ook kan zijn.




g 1 1.5 2 2.5
rin ag —

a Figuur 19.3 De waarschijnlijkheid per volume-een-
heid van een elektron in de grondtoestand van het
H-atoom

kans AP om het elektron aan te treffen in een

blokje volume van grootte AV op een afstand r
van het centrum

Probability density (y?2)

Distance r
A B from nucleus

AP
Ar

-10 -8

& 8 10
rimay—

a Figuur 19.4 De waarschijnlijkheid om het elektron aan

te treffen op een afstand r van de kern.

kans AP om het elektron aan te treffen in een

schil met dikte dr (oneindig dun) op een
afstand r van het centrum

Hoofdstuk 19: Quantumfysica

Radial probability distribution:
Total probability of electron being
in a spherical layer (sum of y2)

Distance r
c D from nucleus

§ 19.1 De aanloop naar de quantumfysica —
| | | | | | | | | | |
—Vergelijkbaar (in 2D) met de—

vraag "hoeveel appels
— vallen er in een ring van —
bijna oneindig dunne dikte
" drrondom de boomstam?
De meeste appels vallen
dicht bij de stam. Echter,
_ omdat de opperviakte van
de allerbinnenste ringen
_ heel klein is (A = 2rr*dr)
vallen daar maar weinig
—appels in. De binnenste ring —
heeft zelfs opperviakte nul,
~ dus is het aantal appels in
. '.:ﬁe n'nlg nuf.l .

L

Number of apples
in each ring

Distance from trunk

| | Interpretatie van figuur 19.4: Dit is de kansdichtheid om het

elektron aan te treffen zoals in fig. 19.3 maar dan
vermenigvuldigd met het volume (4rtr’ *dr) van een
oneindig dun schilletie op een afstand r van de kern. Omdat
__ het volume van dit schilletje nul is bij r = 0 is de waarde van
deze grafiek daar ook nul.




Wiskundig intermezzo: infinitesimaal denken in schillen
van bollen en schijven van bijna oneindig dunne dikte

Hoofdstuk 19: Quantumfysica

R R T B W ] |
Wat is het volume van deze bolschillen?

..-Trr'z -

4

y 3

6

3

3
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| | | | | | | | |

T8 ) G fip_ 5 /P
(-%} .. b F LT s ég\ 2
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w
/

7

2,5
rina; —

4 Figuur 19.3 De waarschijnlijkheid per volume-een-
heid van een elektron in de grondtoestand van het

S ——
—
—
e

H-atoom

P A"

L 1
Nes

Ui

te

—_— i
e I = 3 -T" 5 Volgens de hedendaagse quantumfysica geeft ]
q’ a1 I \‘ o A figuur 19.3 de waarschijnlijkheid per volume-eenheid
\ i ‘v\ f/ " Y // om het elektron op een afstand r van de kern aan te =
p ET \ N treffen. Langs de verticale as staat |
\ 7 // \ \ J / AP
NS - AV © -
en hierin is AP de bijdrage die het volume AV levert aan
|_) i de totale waarschijnlijkheid. =
™ A d} ) L r o jﬁp ‘ a Leg uit waarom de oppervlakte onder de grafiek niet
L/ i —— |, V = ) P 4 " i ge!uk isaan1. i
l_ AN/ ? - \ "nT r P dr - -L b Leg uit dat als AP/AV wordt geintegreerd over de
/ IV e 7 (A} gehele ruimte rond het atoom het resultaat wel 1
r moet zijn.
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\'\
2

N

B

Ar

het elektron aan te treffen ergens in een bolschil
met dikte Ar en op afstand r vanaf de kern. Deze

\ ‘}N\ L
dﬂe ‘ﬁé \\ \V‘L‘f !
\ A

NS

waarschijnlijkheid wordt gevonden door

A
F (r) te vermenigvuldigen met 4nr?. Leg dit uit.

0 8 -6 % 2 0 2 % 6 B8 1
rin ag —

a Figuur 19.4 De waarschijnlijkheid om het elektron aan
te treffen op een afstand r van de kern.

c Met£ (r) wordt de waarschijnlijkheid bedoeld om

~i
- AP
AT): ywed| | ——
— [N
]
()A f TS0
F€tviak van [ | AF
dle |bo chif P- } yrret el A =
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§ 19.1 De aanloop naar de quantumfysica —

AP
d De grafiek van A (r) staat afgebeeld in —

figuur 19.4. Verklaar de vorm van deze grafiek —

e Uit berekeningen blijkt dat het maximum van deze
grafiek toevallig (?!) precies op een afstand van —
1 bohrstraal a, van de kern ligt. Controleer dit in de
grafiek.

Figuur 19.4 De waarschijnlijkheid om he

te treften op een arstand r va

fl

hiee
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3. Het elektron heeft in het Bohr-model potentiéle energie en kinetische Hoofdstuk 19: Quantumfysica
energie. Zelfs in de grondtoestand heeft het elektron kinetische energie

die het nooit kwijt kan raken. Deze energie heet de nulpuntsenergie. § :‘191‘ De‘aan‘loorf na‘ar d‘e qL‘Jant‘umf‘ysic‘a ]

|
TD_ ne= o
3

P 1e aangeslagen toestand = —

S ZERO-POINT

r ENERGY

-2

-12 -

~136lg grondtoestand oy

. Figuur 12.37 Energieniveauschema van waterstof . Figuur 12.38

i g = | e
E BBy | Emamu vl
"
N
= (
U“ \J Aﬂ’bs E"l’ 6 \‘, i‘\
n e 2 | -27L &N
1)
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§ 19.1 De aanloop naar de quantumfysica —

Opdrachten _
6 Controleer met behulp van een berekening dat voor

waterstof de nulpuntsenergie volgens het bohrmodel
gelijk is aan 13,6 eV. Gebruik hiervoor de resultaten

van opdracht 2.

7 Bereken de nulpuntsenergie van eenmaal geioniseerd
helium.

8 De golflengten van het waterstofspectrum kunnen

worden berekend met behulp van de formule

2m. f%e* =
E,=— — 0Ig (zie opdracht 2d)

Laat zien dat uit deze formule volgt dat:

| _E.,—E._ 2n2mcf2e4(1 1) —
= s L

;‘-n.m he - h3c n nl‘2

Extra inzicht:
absolute waarde van
de elektrische
potentiéle energie is
twee keer 7o groot
als die van de
kinetische energie.
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helium.

'| L
|=¢($LD wakestor § 19.1 De aanloop naar de quantumfysica —
\N ; 2 2 \ ‘ ‘
s\ / M,
‘ T | |
m 2 “1 _cz & > (e 3 e) Bereken de nulpuntsenergie van eenmaal geioniseerd

o

N

.. . 'e-e)- - N )
\ 1x oEionIee Fo o o
P
: o OngRiof niseecdl eenmaal
: Nelium geioniseerd
4 ¢ helium
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Jr n ) § ‘191‘ De‘aan‘loorf na‘ar d‘e qt‘xantumfysica —

7~ | | | | | | | ‘ ‘ ‘
I | | | |
___/ = g 8 De golflengten van het waterstofspectrum kunnen
‘ q L :lTT 2 wh £z worden berekend met behulp van de formule
:!n;m ]‘Ez e i H—11is 21m. f2e |
- e AT ™ .eq E Ey— % (zie opdracht 2d)
- n‘z h‘l | | m h | Laat zien dat uit deze formule volgt dat: |
S———— s e S et s S|

' , | \‘ ‘A L] h 1 - EH > E"I T znzmcf.ze4 (L - L) -
ol (ned12): E.p.e o € dus A i | T il

. |

A _ E | |
/4 hell i )
! y | A M- n ] AL | )
(=] IN 3 ]
&E" e, T, T, & j | oo _ :
- e v ke " e ZT[‘ wle (I A_:;f.m 12.37 Enewgie:i:al:::::a van wate\’smf" : =

A - PNEN | — | o s -
Amsn h¢ ¢nh i3 n 2iIA f-‘,)'k‘ L“‘f tﬂe
vecschillende €nemgieniveau




Is ™ Wa{imsf;g_s, : Hoofdstuk 19: Quantumfysica
g R i § 19.1 De aanloop naar de quantumfysica —
mai{tle oY) ¢ (olo) S
- . = e % | 9 De energieniveau's van waterstof en die van eenmaal ]
'ﬁ" L . . i geioniseerd helium kunnen worden berekend met
o v th(uW" behulp van de formule
227 m. 2! =
1 q By =0 n2—r;:2f€
/ de.e ) |
/ D) 22 4 \" @ o ¢ waarbij Z het atoomnummer is, dus Z = 1 voor water-
o "'l 4\ WALl !Fe stof en Z = 2 voor eenmaal geioniseerd helium. —
t' = a Dat dit klopt voor waterstof is al afgeleid in opdracht
3 P 2d. Wat verandert er aan die afleiding als Z>1? Laat —
n?. h ¢ / ln \Hnium zien dat met Z = 2 de formule inderdaad klopt voor
eenmaal geioniseerd helium. =
/ / N 2 y b Bereken de nulpuntse jie van tweemaal geioni-
22 4 / k‘?q e ) - e seerd lithium v?gens het bohr-model. =
— 'Y\'lrr - ¥i ~ q | LY 2 |
- = < C ~ ‘ 7 tot |
N [ I
2\.¢ + + P
nth P Pq E Poi ‘e
. ~2 2 24 R P
een Cl. & ™t 4 | =
T s e R | B R T onggicristrd | peionger
tige | lonew . nth ‘ helitimn E alk || |




§ 19.2 Deeltjes en golven
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4. Twee golven die elkaar tegenkomen interfereren met elkaar. Zulke

interferentie kan constructief of destructief zijn.
|

constructieve
interferentie:

twee golftoppen

versterken elkaar

destructieve
interferentie:

een golfdal
"doven elkaar

uit

een golftop en <

4. Figuur 9.18 Twee golven ontmoeten elkaar.




5. Je kunt uitrekenen onder welke hoek t.o.v. twee bronnen er destructieve |

of constructieve interferentie optreedt. Hoeken van constructieve

interferentie leveren buiklijnen, hoeken van destructieve interferentie

leveren knooplijnen op.
| | | | | | |

a Figuur 19.8

. a Figuur 19.8

—+—§ 19.2 Deeltjes en golven

Hoofdstuk 19: Quantumfysica

Constructieve interferentie:

Golven komen aan bij ontvanger

met faseveschil = 0 omdat het
weglengteverschil precies een

geheel aantal golflengten is.

Dus As = 11; 2A; 3A; enz.
I Tl T T G

Destructieve interferentie:

Golven komen aan bij ontvanger

met faseverschil = 0,5 omdat het
weglengteverschil precies een

halftallig aantal golflengten is.

Dus As = =1.58 2,58 enz.

c. de frequentie lager maakt.

Bordoefening 2. Twee luidsprekers spelen
dezelfde toon. Leg uit hoe de hoekenvande
knooplijnen en buiklijnen veranderen als je:

a. de luidsprekers verder uit elkaar zet



interferentie leveren buiklijnen, hoeken van destructieve interferentie

leveren knooplijnen op.

5. Je kunt uitrekenen onder welke hoek t.o.v. twee bronnen er destructieve
of constructieve interferentie optreedt. Hoeken van constructieve

Hoofdstuk 19: Quantumfysica

—§ 19.2 Deeltjes en golven —

a Figuur 19.8
AU

let op: afstand D >>d en
vanwege de kleine hoek 8

geldtsin®=tanB8 =0
| | | |

Bordoefening 3. Twee luidsprekers —

produceren een toon van 320 Hz.
a. Reken de golflengte uit bij v=343 m/s.

b. Bereken de hoek van de eerste buiklijn.

N

W




e _
Vuistregel: "ﬁ:ﬂé:“‘l"?:?. Hoofdstuk 19: Quantumfysica
De maxima liggen v uit elkaar als ﬂ“_fv = § 19.2 Deeltjes en golven |
de verhouding A/d groter is. R £3:w .
"\ > |
M)A {
: {o‘ |
_ )\L 2
A 0N
e 0N
ﬂ“\ L\
k\LL_q 2 Kl
1 ) ™S
Ij _Z; ™ _—ZI Iig é Bordoefening 2. Twee luidsprekers spelen
; dezelfde toon. Leg uit hoe de hoekenvande
kﬁi K ™ <j 7“ knooplijnen en buiklijnen veranderen als je:
1ﬂ NS ANNTNN| L ass A a. de luidsprekers verder uit elkaar zet B
« c. de frequentie lager maakt. =
SRRREEEE EEERRERERE
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§ 19.2 Deeltjes en golven —

Opdrachten ]

10 Je slaat een stemvork aan en draait de stemvork zoals

7
N

-
> 2
S

in figuur 19.10 is aangegeven. Leg uit waardoor jeafen
toe veel en af en toe weinig geluid hoort.

M ¥

-

\V
-

/BDOOXD
—

a Figuur 19.10

chh

Y'\.lgﬁ Nu
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(=N
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§ 19.2 Deeltjes en golven

o

it

Vuistregel: - hoac_w
5 5 : ¥
De maxima liggen verder uit elkaar als

de verhouding A/d groter is.

Ab ke\“e( # “_li.‘l?.lher =

—

11 Bekijk figuur 19.8 . De geluidssnelheid is 340 m/s en de

frequentie is 400 Hz.

a Bereken de golflengte van het geluid.

b Leg uit of de afstand AB groter of kleiner wordt als je
de proef met een hogere toon uitvoert. Persoon B
zoekt weer de plaats van het minimum op.

¢ Leg uit waardoor deze proef met luidsprekers buiten
beter lukt dan in een klaslokaal.

d Hoe kun je ervoor zorgen dat de middellijn een

Laat de luidsprekers "uit fase" werken,
bijvoorbeeld door de twee draden die naar de

luidspreker lopen te verwisselen. De ene

*A,——Iuidspreker duwt dan net naar voren als de

andere achteruit beweegt. Ze produceren dan

golven die een faseverschil van een halve

periode (T) hebben.

knooplijn wordt?
| | | |
E)B @

i
frmsmamcaaa

A Figuur 19.8
| | | |
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6. Ook elektromagnetische golven

Hoofdstuk 19: Quantumfysica

kunnen interfereren, zoals bleek uit het

tweespletenexperiment van Young. —§ 19.2 Deeltjes en golven

[ [ [ [ [
twee spleten vormen als het

ware twee bronnen van licht

—— grafiek van de intensiteit |
iddellijn/buiklijn 1 op verschillende plaatsen

=i op het scherm

vlakke golf
komt aan

A Figuur 19.11 Het tweespletenexperiment e

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ scherm (op 2 m afstand)




Bordoefening 2.
l

a4V

A

§ 19.2 Deeltjes en golven

Hoofdstuk 19: Quantumfysica

—Bordoefening 3. Je laat een rode
_laserbundel (A = 695 nm) door twee spleten
vallen die 40 um uit elkaar staan. Je

projecteert het interferentiepatroon op een

Vuistregel:
De maxima liggen verder uit
elkaar als de verhouding A/d
groter is.

scherm dat 3,00 m van de spleten vandaan
staat. Hoe verandert de afstand tussen de

maxima als je:

a. een groene laser neemt (A = 450 nm)

b. de spleetafstand 80 um maakt
c. het scherm verder naar achteren schuift
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§ 19.2 Deeltjes en golven

-

\'/\'/‘“"’ I_

Opdrachten
12 Interferentie komt voor bij alle soorten golven op
plaatsen waar ze elkaar overlappen.
a Leg uit waarom in figuur 19.11 de middellijn tussen
de twee spleten een buiklijn is.
b Verklaar het patroon van maxima en minimain de
figuur. Gebruik hierbij de begrippen constructieve en
destructieve interferentie.

a Figuur 19.11 Het tweespletenexperiment

9

13 Infiguur19.12is het linkervlak gedeeltelijk ontkleurd
om de punten A, B en C duidelijker aan te geven. Punt
C geeft een maximum in het interferentiepatroon aan.
Leg uit dat de afstand BC twee golflengten groter is
dan de afstand AC.

e
S

a Figuur 19,12




7. Het blijkt dat licht en elektronen beide een deeltjes- en een golfkarakter
hebben. Deze schijnbare tegenstrijdigheid wordt de golf/deeltje-dualiteit

genoemd. Afhankelijk van het verschijnsel kiezen natuurkundigen voor de

ene voorstelling of de andere. Voorbeelden:
| | | | | | | | LY U WA | |
| + ! F

|
Golfkarakter van licht: Golfkarakter van elektronen: | }
- interferentie 1 - elektronendiffractie

- breking - elektronenmicroscopie

[

2

S ) i T P e e
Deeltjeskarakter van elektronen:

Deeltjeskarakter van licht:

Hoofdstuk 19: Quantumfysica
——§ 19.2 Deeltjes en golven —

- elektrische stroom

- foto-elektrisch effect

- afbuiging in magnetisch veld

- lijnenspectrum

- rontgenstraling

Hugéen%

Newton




7 (vervolg). Er is samenhang tussen de
deeltjesvoorstelling en de golfvoorstelling:

Hoofdstuk 19: Quantumfysica

§ 19 2 Deeltjes en golven —
1 \ || -

energie

o licht als

golf licht als
deeltje

elektronen

als deeltje

Bordoefening 3a. Een kogel uit een geweer (m = 2,5 g)

vliegt met een snelheid van 3,2 x 10* m/s. Reken de
kinetische energle en de |mpuls van de kogel uit. -

Bordoefening 3b. Een elektron in een oude beeldbms- | |

TV is versneld tot 1,2 x 10% m/s. Reken de kinetische

energie en de impuls uit. -
| | | | | | | | | | |
Bordoefening 3c. Reken uit wat de energie en impuls  _

o

licht = = +‘
massadeeltjes E = 1 -
2
Bordoefening 3a. B N L IR, < i 2
B =32 49l o ) — |
P=2510 -
' ' ! I | | | |
Bordoefening 3b. E 1 - A
=3 gl“'lo )
P=an . /
T s

zijn van een foton uit een rode laser (A = 650 nm).
| | | | |




L oL . P , .
Bordoef 3a. o : : o B Hoofdstuk 19: Quantumfysica
ordoefening 3a E = > 2'5 10 3,1 _) < 1,310 ) - Q y
= 2 § 19.2 Deeltjes en golven —
| | | | | | | | | | |
P ~ 2'5 10 - 32:10 = o) . "% Bordoefening 3a. Een kogel uit een geweer (m=2,5g) -
vliegt met een snelheid van 3,2 x 10 m/s. Reken de
Bordoefening 3b. E‘_ T 9 “.Ia’.’d < 1,2t 1O )2 s 6 6 10 i kin|EtiscPe e'nlergieI en c!leimplzuls van dpl_- kog?l |_|it.I _d
2 ! ! == mzad Bordoefening 3b. Een elektron in een oude beeldbuis- —
-3\ ; TV is versneld tot 1,2 x 10% m/s. Reken de kinetische
Pz ain: 0 112 3 =2 m/ energie en de impuls uit. i
‘J 9| 'l 0] = lgl 10 ka /5 | | | | | | | | | | |
) Bordoefening 3c. Reken uit wat de energie en impuls -
Vall I o010 zijn van een foton uit een rode laser (A =650 nm).
Bordoefening 3c. 7 ; ! | | | | | | I I I I I
-F': — s ; -q = ’-1. 62- [{o] H2 Bordoefening 4. Bereken de De Broglie-golflengte van
: A SO0+ 107 de kogel, van het elektron en van het foton. ]
| | | | | | | | |

<34 Yy I energie iw\
626 ) T ™M
ol J licht E:hf ﬂ)= ';:- .\

-c
o~
N
O

i
(V)

/ -3¢
(o) 62,6-}0 o massa 2! 2 o

‘ < ].O-10 gL—r""'/' deeltjes E P P =m U
45 {U‘ 3 : % S' ,/—'_i-"“"-.._....—'

h /

7 (vervolg). Het blijkt dat de relatie tussen impuls en golflengte 7
ook andersom werkt en ook geldig is voor massadeeltjes. A

]
3

,T\

—]

C
-H|[ S

Massadeeltjes hebben een DeBroglie-golflengte volgens:
BRI At Ml N MY QRN M (M G o
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Bordoefening 3a. D= 2510 3 'o! O k‘} /'S Hoofdstuk 19: Quantumfysica
! /]
¢ 1 .
§ 19.2 Deeltjes en golven —
d | | | | | | | | | | |
Bordoefening 3b. Do lo - 3 T 3 . > m) Bordoefening 3a. Een kogel uit een geweer (m=2,5g) -

-
[ {

";.
%
"
(o]
o

vliegt met een snelheid van 3,2 x 10° m/s. Reken de

kinetische energie en de impuls van de kogel uit.
| | | | | | | | | | |

6 (26 =34 Bordoefening 3b. Een elektron in een oude beeldbuis- —
aihe ,020:-10 allls -21 m/ TV is versneld tot 1,2 x 10% m/s. Reken de kinetische
Bordoefening 3c. s hert kg> ‘(S energie en de impuls uit. |
| | | | | | | | | | |

Bordoefening 3c. Reken uit wat de energie en impuls -
v‘ zijn van een foton uit een rode laser (A =650 nm).

65;0-90'3 -

7 (vervolg). Het blijkt dat de relatie tussen impuls en golflengte

Bordoefening 4. Bereken de De Broglie-golflengte van

ook andersom werkt en ook geldig is voor massadeeltjes. ﬂ LI <
Massadeeltjes hebben een DeBroglie-golflengte volgens: B \ \ e HeEe
| | | g e
L o i i |
— ehatle? T 1ol T L
Bordoefening 4. f—TA = Q2 < — h |
ordoefening 4 kogel: A= £ 8310 m - E:hg p=
| extra inzicht: De golflengte 0,80 A
van een kogel is veel kleiner massa ) 2
| dan de lengte vd kogel zelf, | Lo Lok i:}y.‘ 4 dectties E TsmuyU P=muv
daarom vertoont de kogel elektion: 1 - 1/ Vidrd A =12 e )
— geen kwantumgedrag. De 2 = O I lO ™ i
golflengte van een elektron Il ’o' ]
— is veel groter dan het !
elektron is. Daarom
— vertoont een elektron wel -1‘: +Qn- : } = 65"’ laal
kwantumgedrag.




7 (vervolg). Doordat massadeeltjes dus ook een golflengte hebben
kunnen daarvoor ook interferentiepatronen zoals voor licht ontstaan:

Hoofdstuk 19: Quantumfysica

§19.2 Deeltjes en golven

Nahs

— Dit gedrag kan
dus van water,

 geluid, fotonen

. of elektronen

Graphit

Target

e

+
S

>

\!tfjhv‘SFawmn@'
|

L = Distance Graphite to Screen

Snelle denkvraag: Als je de —
versnelspanning groter maakt,

Demo EDT (YouTube, 4 min) ——

wordt de diameter van de

ringen dan groter of kleiner?
L L

A=

zijn. I
- //1\ 4 Figuur 19.11 Het tweespletenexperiment ==
l energie impuls
o .
licht E-hf p=
massa 1 2
B - W
deeltjes E 2My P m
i i i i DeBroglie-golflengte |

van deeltjes

L.



| | | | | | | | | | | | |
9. Je kunt rekenen aan het elektroneninterferentie-

Hoofdstuk 19: Quantumfysica

experiment met formuleXuit hoofdstuk 11
— — —§ 19.2 Deeltjes en golven —

-~
| | | | | |

T —u——— — i:'_Edi-

Bordoefening 5a. Bereken de De Broglie-golflengte

van een elektron dat versneld is door een spanning

van 2,5 kV. S 1 energie impuls |
O S S S PR S I — T— .
Bordoefening 5pro-extra. Bereken de hoek | — A N £ 4 ¥ P: il —
van het eerste interferentie-maximum bij deze | ] A =
versnelspanning. Gebruik d =0,124 nm. b E= 2w u_z P=muv
— deeltjes 2
3 ’ E' L= Distance Graphite o Screen i i i i
- L -] " =19 -l
a Lol = U Qv S| 2=S (o) \/ : 156"0 b = Lf.'o 10 3 . DeBroglie-golflengte |
- van deeltjes
= -
oo \|2Ex = 2)963- 107 "L a A= b. .
™ ) =
i P.
\f\ ‘/ DI rA=Riio) B
7 .\ —_— e =i
A= = = =7 ; ™ '2"5?‘ & )
P mu| giMioT- R983-107"
1 -1
m 1 ? Zf' 5 O ‘ 0
pe v 9 3 — [ = - O:“’)Q -2 9 8 ”J 1 "Waarom
! a 0, 124{10| ’ R




7 (vervolg). Dat fotonen impuls hebben ondanks dat ze massaloos zijn
werd bewezen door Arthur Compton in zijn verstrooiingsexperiment:

Cathode

Detector

Electron

after the
collision P

Electron 4 g
5 before the "
i collision // R

ANNANN
\ '.."." \||'II¢

I\.-"II I"u'll \ I'u'l I'U'" VAY, ° "
Photon with 9
waver’en%?\

A\

: g %
Photan with
wavelength »'

Hoofdstuk 19: Quantumfysica

§ 19.2 Deeltjes en golven

Wai

hoe langer de golflengte die je

=
-

Hoe groter de hoek 6 waaronder
je de teruggekaatste traling meet,

daar meet.
b
/
energie impuls
_ h
licht E- hf P' ,I'
massa ) 2 o
deeltjes E 2y P = A




8. De impuls van een massadeeltje is een behouden

Hoofdstuk 19: Quantumfysica

grootheid en kun je uitrekenen met: - =
o ) ﬂ“l => P ™M U §19.2 Deeltjes en golven -
Before After |
m=l5kg  m=6lkg m=15kg  m=60kg Before : After
v=0lm'hr v=0km/hx =7 =it /
: V!
@ ; nels ¢
) = 0, {} 0
_______ ol il
o .ﬁ.
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§ 19.2 Deeltjes en golven —

7

Opdrachten

14 In de quantumfysica wordt de kinetische energie =~ __

1

meestal niet geschreven als functie van de snelheid

maar als functie van de impuls. Laat zien dat de —
volgende formules gelden:

it

Ec=4—enp=\2mE B

A/

3

15 Leg uit wat de Sl-eenheid is van impuls.

—
r.

N
-t
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§ 19.2 Deeltjes en golven —

w

~ND

N
m

Opdrachten |
16 a De massa van een auto is 970 kg en de kinetische
energie 6,23 - 10° ). Bereken de impuls.
b Van een molecuul met een impuls van
1,43 - 107 kg-m-s~' is de kinetische energie
3,42 -1072° ), Bereken de massa.

17 Bereken de impuls en de snelheid van het elektron in
de grondtoestand volgens het bohrmodel van het
waterstofatoom.

18 Als een plaatje van koolstof of ander materiaal wordt
bestraald met zichtbaar licht kun je uit het verstrooide
licht vooral conclusies trekken over de eigenschappen
van het materiaal. Compton kon zijn experiment
verklaren met botsingen tussen gammastralen en yrije
elektronen. Waarom was dit in zijn geval een redelijke
e ———
veronderstelling?

27| 0p9. 14 |\
- | [P T\

E:k= . p=\[2mE ]

——

c"ﬁ ' y
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P=\/[2 930" 23-10° | = 34810 kg mfs -
\/ /1 = Lo i o uoWom oW W
Opdrachten |
16 a De massa van een auto is 970 kg en de kinetische
energie 6,23 - 10° ). Bereken de impuls. |
A-\ — / i 0 6 b Van een molecuul met een impuls van
) = y .= » . m/ 1,43 - 107 kg-m-s~' is de kinetische energie T
k t% , ’ c e"v ) lr- 2J 2 , C' S 3,42 -1072° ), Bereken de massa.
Nt D |
lpuntsenemie
(ﬂ P4 5 ) 17 Bereken de impuls en de snelheid van het elektron in
de grondtoestand volgens het bohrmodel van het T
/] ] Eloct waterstofatoom.
l ittcec-enecnieen > trir I N
( U eqw - 'a..,_‘\‘ ey | 18 Als een plaatje van koolstof of ander materiaal wordt
= k I \/ " Electron bestraald met zichtbaar licht kun je uit het verstrooide
~ enkele R - ] gg;?;%g‘e /p’ 1 licht vooral conclusies trekken over de eigenschappen

E B : van het materiaal. Compton kon zijn experiment
Zichtbaar licht VAVAVAVAVAVAY) o '; verklaren met botsingen tussen gammastralen en yrije

! Photon with elektronen. Waarom was dit in zijn geval een redelijke
-1y 3 WA X veronderstelling?

Ll
—_—
-

i "5“;‘,; 2,48 eV A\ il 2| 0p9. 14 [ | )
Photon with p— P r ‘i\

[ wavelength » I
owete ppmngelener tE = p=\[2mE,_
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19 Uit de relativiteitstheorie volgt voor massaloze
deeltjes,zoals fotonen, dat de impuls daarvan gegeven

Leid hieruit af dat de impuls van een foton wordt

< energie impuls
\\ : licht E:hf P= =
™~ ps = me | Edmot | prmy
A
S=u-t . \
sy = % Tl




| | | | | | | | | | | |
9. Uit het elektroneninterferentie-experiment ‘ ‘ ‘ ‘ ‘ ‘
blijkt het golfkarakter van massadeeltjes. ]

— Demo EDT (YouTube, 4 min) —
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| | | | | | | | | ‘ ) ‘ ‘
-1. € et al
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zich Wiec als golf ... e
(want je "kijkt" niet

Hot cathode  waarhet atoomis

J

(want je "kijkt" wel
r waarhetatoomis)

Graphite

—Snelle denkvraag: Als je de versnelspanning

63V; 13,0 :
v: ) l:g ) e o o ' g-roter :aa kt, :vord;c :Ie -dlar?eter van de i
ermMoogen ; ringen dan groter of kleiner?
wechitking goeidmad \ T 28 KV U P \{2“‘ S et i e, R
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makkelijike (i) (, Ed = CL U A: — .
te maken P T licht E-h¢ { Pe = _
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massa E: %mu_z P ¢

deeltjes
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« Figuur 19,13

§ 19.2 Deeltjes en golven

L
| 20 Figuur 19.13 geeft het interferentiepatroon weer van
een dubbelspleet experiment met C,sH.6F.;NsOs.

a Om zo’n experiment te laten slagen moet de
golflengte van het molecuul groter zijn dan het
molecuul zelf. Geef hiervoor een argument.

b Schat de omvang van het molecuul op ongeveer
5 nm. Bereken dan de maximale impuls die de
moleculen in dit experiment mogen hebben.

¢ Bekijk de hele reeks foto’s als filmpje. Zoek op:
phthalocyanine quantum interference.

Welke details in dit filmpje zijn kenmerkend voor
golfgedrag en welke voor deeltjesgedrag van de

moleculen?

P

 deeltjes

= energie |mpu|s
T licht E:hf p= ,1‘
B 2
massa E:_iému_ P=M'U-
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21 Laat met een berekening zien dat het verband tussen

L
K
|
1)
e
."‘j

de golflengte (in m) en de kinetische energie E (in eV)
- \ van een elektron wordt gegeven door de formule

4,141- 10 4 1yl-to | 30"

2-9,) w0 Ey \[2 g0 \&e | \E« -

J | | | | | | | |
= niek | 20 R O P/ S B I hyuag_

zich \iec als golg....’____ dft!-b,_

6,626-10 TN

{©"

Target
‘eruoldu' (h‘;' g7 - Ek ) ol C | N ﬂetn;wama
O

3 " =9 63V;3.0 - ,
6'626 . o“ "I g l 1,2 * “) ° "; ! )n tﬂ.f L = Distance Graphite to Screen
— wechitbing gocdraad \ 7o 25 KV
= " — | =T Oom elekiionon Cl'snt.lquumnrj U
..“ + s =l |r I Mﬂkhdijk?f' Vfﬂ ()Eﬂz 1“
9M10 - 1300 N \ te maken
t \ Ek
lﬂ 1( Ank ;3‘1 H\q- = Ly
l ' | = WV L™ P — 1 i 1




10. Elektronenmicroscopen hebben een groter onderscheidend vermogen —
(zie hfd. 18) door de kleinere golflengte van elektronen vs. zichtbaar licht. In__|

plaats van lenzen worden magnetische velden gebruikt.

Hoofdstuk 19:

Quantumfysica

—§ 19.2 Deeltjes en golven —

transmissie lage energie

Llichtmicroscoop elektronenmicroscoop elektronenmicroscoop
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00g
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§ 19.2 Deeltjes en golven

22 a Bereken de golflengte van een elektron met een
energie van 10? eV,

b Bereken de golflengte van een elektron met een
energie van 10? keV.

23 Algemeen geldt dat er geen details kunnen worden
waargenomen die ongeveer even groot of kleiner zijn
dan de golflengte van het licht of van de elektronen
waarmee de waarneming plaatsvindt. Maak met
behulp van dit gegeven een schatting van het maxi-
male scheidend vermogen van:

a een lage energie elektronenmicroscoop bij een
versnelspanning van 8o eV,

b een transmissie elektronenmicroscoop bij een
versnelspanning van 160 keV.

& cpall

|

—

)

QMJ

E.




a Het kristalrooster van grafeen.
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24 Schat het scheidend vermogen van de volgende
elektronenmicroscoopopnames door te kijken naar de

kleinst onderscheidbare details. -

. 002 Yy

a Figuur 19.17

d Mitochondrién in een menselijke cel.

| .a Figuur 19,18

a Figuur 19.16
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2 pm

Op de foto is echter tot maximaal 20 pm detail te zien, dus kennelijk was de kwaliteit van de "lenzen"
hier de beperkende factor en niet de golflengte van de deeltjes. Regel: je kunt bij perfecte lenzen

details zien die ongeveer even groot zijn als de golflengte van de gebuikte deeltjes.
|

a Bereken de golflengte van deze elektronen.

b Wat heeft vooral het scheidend vermogen bepaald,
de golflengte van de elektronen of de nauwkeurig-
heid van de lenzen?

26 In plaats van elektronen met een kleine golflengte,
kan ook elektromagnetische straling met een kleine
golflengte gebruikt worden voor het bestuderen van
materie.

a Bereken de golflengte van elektronen met een
energie van 100 keV.

b Beschouw elektromagnetische straling met dezelfde
golflengte als in a. Welk soort elektromagnetische
straling heb je dan?

¢ Waarom is deze straling minder geschikt om foto’s
van bijvoorbeeld virussen of andere kleine voorwer-
pen te maken?

4 B .
I PZ Hoofdstuk 19: Quantumfysica
| \ 2 m
- - e | s - v A\ 1
g MY = e D= 2- M, § 19.2 Deeltjes en golven =
|
g 2 T el . P O
) B I
. 1 \ 25 Het scheidend vermogen van een microscoop hangt, = —
N N i 5 i n behalve van de gebruikte golflengte, vooral af van de
A == P < on- U T - nauwkeurigheid van de lenzen. De elektronen in de —
) I opname van grafeen (zie figuur 19.15) hadden een
:F 2 me Ek ] energie van 8o keV. —
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25 Het scheidend vermogen van een microscoop hangt,

-0

DS

o~

behalve van de gebruikte golflengte, vooral af van de

nauwkeurigheid van de lenzen. De elektronen in de

opname van grafeen (zie figuur 19.15) hadden een

energie van 8o keV.

a Bereken de golflengte van deze elektronen.

b Wat heeft vooral het scheidend vermogen bepaald,
de golflengte van de elektronen of de nauwkeurig-
heid van de lenzen?

26 In plaats van elektronen met een kleine golflengte,

SN 00

g

”
~

O

-
~

kan ook elektromagnetische straling met een kleine

golflengte gebruikt worden voor het bestuderen van

materie.

a Bereken de golflengte van elektronen met een
energie van 100 keV.

b Beschouw elektromagnetische straling met dezelfde
golflengte als in a. Welk soort elektromagnetische
straling heb je dan?

¢ Waarom is deze straling minder geschikt om foto’s
van bijvoorbeeld virussen of andere kleine voorwer-
pen te maken?




§ 19.3 Waarschijnlijkheid en complementariteit
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11. De golfeigenschappen frequentie en golflengte van een deeltje zijn

gekoppeld aan energie en impuls (
| S Y S |

3 Ilcht als

zie par. 2). Qua amplitude geldt:
S

In de golfvoorstelling heeft een

bundel licht van hoge intensiteit

een grote amplitude.
| | | | | |

_In de deeltjesvoorstelling heeft een

bundel licht met een hoge intensiteit

een hoge deeltjesdichtheid.
| | | | | |

.K
licht als [

deeltje =

elektronen

als deeltje

— Conclusie: kwadraat van de

CEL

=
o

amplitude van een golf is

evenredig met het aantal

elektrisch veld

|

|

‘ amplitude vh
; - ;

‘ | | | | |

deeltjes per seconde.

energie impuls |
licht E:hy p= i— N
dT:t;:s Exim st P
| | { "} \
i’ AAAT T
7 b > /
O N
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De amplitude van de golffunctie van een elektron geeft niet zozeer de - Hoofdstuk 19: Quantumfysica

hoeveelheid deeltjes aan die op die plek zijn, maar eerder de | RS e T S ey e w—

waarschijnlijkheid dat een deeltje zich op die plek bevindt als je zou meten.
| | | | | | | | | | | | | | | | | | |

12. Deze waarschijnlijkheid wordt gedemonstreerd door het tweespleten-
experiment uit te voeren met een bron (licht of elektronen) van extreem

lage intensiteit die deeltje voor deeltje afschiet. Het interferentiepatroon

-

A4

N

ontstaat alsnog. —

a Figuur 19.21 Grafiek van de intensiteit in een
interferentiepatroon (zie ook figuur 19.11)

W

a Figuur 19.22 De geleidelijke opbouw van een e
interferentiepatroon, punt voor punt

a Figuur 19.11 Het tweespletenexperiment



13. De golffunctie bij een deeltje (bijv. elektron) geeft informatie over waar je

het deeltje waarschijnlijk zou aantreffen als je het zou proberen te detecteren.
|
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§ 19.3 Waarschijnlijkheid

en
|

complement. —
|

Graphite
Target
-

=z i

| | | |
| | | | |

) = . Eree partidle visualization .

Voorbeeld, golffunctie van een vrij deeltje: (Youtube 2 min) —1—
Hot cathode
NN
\“.‘ \ \ /lH > TV} :
W, \ N
=

Als je de golffunctie van een deeltje weet kun je een waarschijnlijkheids-

verdeling maken. Daarvoor moet je op elk punt langs de x-as het kwadraat

van de golffunctie nemen:

!_L——————'—_'l

elektronen uit een |

elektronenkanon zijn vrijet

deeltjes _

ince Graphite to Screen i

/

== Op het moment dat de golffunctie er zo uit ziet —
=== geven deze toppen de locaties met de grootste
—waarschijnlijkheid om het elektron aan te treffen. —

—— ——
- ——

e ———y

x

het elektron in een =—
waterstofatoom iseen |
gebonden deeltie _ |

——— —

T -

|
|
|
I




Ingewikkelder golffuncties bestaan ook,

zoals die van een golfpakket:

= [ agk sl ok

n [U'\ MJW I

[

—2 -5 -1 05 0 o05 1 15 2
xinm—

\),I\ l
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§ [ )

x> ) ) ) I (S
VN Voorbeeld. Bepaal hoe de waarschijnlijkheids- -

verdeling van de golffunctie in de linker figuur

\
ﬁ; ib !j %fw% X = er uit ziet en hoe de golffunctie van de

intensiteitsgrafiek van de rechter figuur er uit -
/| zou kunnen zien. |
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Bordoefening s. S Hoofdstuk 19: Quantumfysica

) — § 19.3 Waarschijnlijkheid en complement. —
A NP O O O S O L
A - 7T\ Bordoefening 6a. Bepaal hoe de ]
/ \ waarschijnlijkheidsverdeling van de | |
\ X3 ; iz": golffunctie in de linker figuur er uit ziet en
] \ hoe de golffunctie van de intensiteitsgrafiek —|
/ \ van de rechter figuur er uit zou kunnen zien.
™ | | . i o b f i
/ “‘%,% 5 i __g*"ih"‘%-}r Aanwijzing: de intensiteits-grafiek is het
k7. L — — — kwadraat van de golffunctie. — T
Y \

A

s

ol g A
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intensiteitsqrafiek

[ [ [ [ [ | [ | [ [ [
— 27 Figuur19.20 geeft het interferentiepatroon van een

tweespletenexperiment.

WA SN

a Figuur 19.11 Het tweespletenexperiment

4 Figuur 19.20

a Schat de kans om het deeltje aan te treffen in de
P oranjegekleurde piek.

b Neem de grafiek over en geef aan in (ongeveer)
welke delen van de grafiek er sprake is van construc-

tieve of van destructieve interferentie.

28 Uit de tekst van bron 12 blijkt dat individuele fotonen

zich het ene moment als golf en het andere moment
als deeltje kunnen manifesteren.

a Geef aan uit welke delen van de tekst dit blijkt.
b Leg uit dat een individueel elektron zich in het

waterstofatoom als golf gedraagt.
¢ Geef een voorbeeld van een situatie waarin het

elektron zich als een deeltje manifesteert.

Hoofdstuk 19: Quantumfysica

—§ 19.3 Waarschijnlijkheid en complement.



wiskundig intermezzo: Fourier-reeksen Hoofdstuk 19: Quantumfysica

| |
%._ Y. cos (21) o ~——§ 19.3 Waarschijnlijkheid en complement. —
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wiskundig intermezzo: Fourier-reeksen
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13 (vervolg). Afhankelijk van de golffunctie is de locatie x van een deeltje of

de impuls p van een deeltje meer of minder nauwkeurig bekend.

Hoofdstuk 19: Quantumfysica
§ 19.3 Waarschijnlijkheid en complement. —

| | |
| | | | | | | | |
Als de golffunctie niet een precies

bepaalde frequentie heeft is de

locatie van het deeltje precies

bekend maar de impuls niet precies.

A(K)

=
bre}

=
]

0

Amplitudes —
=

0 2r 4m 6m 8n 10m 12n 14m 16m 18nm 20m 22m 24n
Kk, in rad/m —

Fix) = [ A(K) sin(kx) dk

11,0-
E
A 54
A
0 l1=oo « v
__5.
-1,04

_|_Als de golffunctie een precies

—+locatie niet precies.

bepaalde frequentie heeft is de

| impuls precies bekend maar de

buis, een extreem voorbeeld?

Snelle denkvraag: Van welke twee gevallen
uit figuur 19.23 is de golffunctie van een vrij
deeltje, zoals een elektron in een diffractie-
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13 (vervolg). Er blijkt een natuurlijke grens te zijn aan hoe precies je de

positie x en de impuls p van een deeltje kunt weten. Deze grens wordt
geven door de Heisenberg onzekerheidsrelatie:
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= 0
fh nfﬁ?d)ej‘f A -y . >1 A
=Osig; y N
I!! =
= X
e -\“:‘u'x-' .lf’ ;[ Eel vt dee T'Ji ‘Rordoefening 7a. Een elektror‘i uit een elektr?nenkanon_
is afgeschoten met een snelheid van 4,0 x 10" m/s met
b F, een onzekerheid van 0,2 x 10’ m/s. Bereken: 1
] \eyY\— R a. De onzekerheid in de impuls van het elektron.
N o . b. De onzekerheid in de positie van het elektron. |
non [ [ —— ————
? T T T T T T T T 1 1

Bordoefening 7b. Een tennisbal met m = 18 g vliegt |

over een baan met v = 32,5 m/s met een onzekerheid
inv van +/- 0,5 m/s. Reken uit wat de onzekerheid in de

O
X

positie van de tennisbal is.
| | | | | | | | | |

energie impuls —
licht E:-hy¢ p= 2 N
ic - h-
- A
massa o I 2 o —
| deeltjes E-z\'VIU' P_m v |
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CSJ = O,'2 1O ) 5 Ozoy
i L R,
2 ? -2y y:‘?’*éfed b AX-BP 2 T
&P = m{aU=glllo - 0210 " = |,8]10 kg Y5 i3 N )
¢ cekicheid] v iheuls | vl deetbie
-4 i : "Tr Gl e i
W 66210 ° —u : -
» - = 12 9 10 v F‘:ordoefenlng 7a. Een elektror? uit een elektronenkanon —
DL = / P LY -2y L ’ is afgeschoten met een snelheid van 4,0 x 10’ m/s met
| 10 N 3:7‘]1 een onzekerheid van 0,2 x 107 m/s. Bereken: |
g a. De onzekerheid in de impuls van het elektron. |
o] Ll b. De onzekerheid in de positie van het elektron.
Bordoefening 7b. | i I I I I I I I I I I I

Bordoefening 7b. Een tennisbal met m = 18 g vliegt

/ ' over een baan met v = 32,5 m/s met een onzekerheid
S in v van +/- 0,5 m/s. Reken uit wat de onzekerheid in de _

positie van de tennisbal is.

Ay = 0,014 0S5 = 0 00oq kq. Y"l/e T e S T — — —
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\ ¥ L 4 s | | | | | | | | | | |
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13 (vervolg, extra). Dfe Helsenbe.rg onzekerheidsrelatie is een gevolgvan | Hoofdstuk 19: Quantumfysica
het golfkarakter van licht/materie.

J‘""'J"J'--i--j--L--i--i--L-.i--i--i..J.-J___i,_i__L__i__. § 19.3 Waarschijnlijkheid en complement. —
Toelichti :

r
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8 Voordat de fotonen bij de spleet aankomen heeft de x-coordinaat van hun positie een grote ° .Oﬂe'e.e?m‘a R I
[/ e - [ L

: onzekerheid Ax maar hun impuls een kleine onzekerheid Ap (de component in de x-richting). Nas zPos te | o [AX| AP _)_ bl N 5 A

: de spleet is de onzekerheid Ax kleiner geworden, maar de onzekerheid in Ap is groter geworden: Sl % X 40
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30 Jeannette, met een massa van 58 kg, loopt over straat

3 P=mM-U = 58 ko 2 s = bgf; Iv:A)'/s
¢ P L\ 6’. 676 "5‘5'1 -36
A = —t; = — = 6],‘5‘- 1O m
\ 090 <
C. o \'\ 6,!526 . 16 K -2¢
£ = e ” — 5 -0
4 AX 4 1167w
op | 54073 -26 |
O\ o |— ¢ = = |\0 '"/:;

h

29 a Vnlaens de nnhenaaldheidsrelatie is AxAn = <=

b Bereken met Av = % hoe groot de onbepaaldheid in

de snelheid van het elektron hierdoor is.

met een snelheid van 1,2 m/s.
a Bereken haar golflengte.

b Hoeveel keer zo groot of zo klein is dit ongeveer in
vergelijking met de grootte van een atoom?

c Stel dat de onbepaaldheid in haar plaats ongeveer zo
groot als een atoom zou zijn. Bereken dan de

onbepaaldheid van haar impuls.

d Bereken wat hieruit volgt over de onbepaaldheid in

haar snelheid.
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\q 6626 | -3 Hoofdstuk 19: Quantumfysica
20-Io -2
29 g = (A il i —r 5;3 1O "5 § 19.3 Waarschijnlijkheid en complement. —
a. l‘ T ut.paX 4. 214 oliohsd EEEEa——
-89 Y- 314 01010 L W u o mog |
29 Van een elektron is de plaats welbepaald tot op een —
DF, 5'3, 10-29 nauwkeurigheid Ax = 0,10 nm.
) — 5 ™7/ a Bereken de minimale onbepaaldheid Ap van de —
D. L;U— - = -3\ - 518 -0 /S impuls.




31 aenb Zie onderstaande figuur.

Hoofdstuk 19: Quantumfysica

31 Figuur19.24 is een weergave van de golffunctie van
een deeltje.

th

A Figuur 19.24

a Maak een schets van de bijbehorende kansverdeling
om het deeltje bij een plaatsmeting aan te treffen.

b Geefin je schets een schatting aan van de onbe-
paaldheid Ax, dus van het gebied waarin de kans om
het deeltje aan te treffen ongeveer 70% is.

§ 19.3 Waarschijnlijkheid en complement. —
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§ 19.4 Deeltjes in een put — Hoofdstuk 19: Quantumfysica
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15. Drie kwesties aangaande de bouw van A HISTORY OF THE ATOM: THEORIES AND MODELS

How have our ideas abouwt atoms changed over the years? This graphic looks at atomic models and how they developed. —
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% Lz N Hoofdstuk 19: Quantumfysica
E = ‘!'\M U-Z_ ,_‘__ P \ (/ } § 19.4 Deeltjes in een put m
kT 27 1 To] - 3 Ulz 4— N " R TR TR [
"Want de golflengte die bij een elektron hoort wordt ] = _|
beperkt door de ruimte waarbinnen het elektron Y
opgesloten zit. Deze ruimte hangt af van r zodat A zich —
liniair verhoudt tot r en dus A* ook tot r*."

_____________________________ Sortazorz ) -

nctie van de totale energie E,,; tegen de afstand tot de kernr.

; . - 4 Figuur 19.28 Iedere functie van de vorm - |a| r™* +
Is een somfunctie, dus de functies voor E, en E, bij elkaar opgeteld levert

YR

-9 . . e T |6| r? t ergens een minimum.
deze functie op. De functie heeft ergens een minimum. Dit is de afstand : I

™ recnat @

M Bercapn )

waar de grootste waarschijnlijkheid is om het elektron aan te treffen. ( I == enemgiesoorten uitgewizse!d kunlnen wordelnkzalop Iden duur
neigen naar een toestand van zo laag mogelijke totale energie
door verliezen naar buiten door bijv. wrijving.
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B 19.4 Deeltjes in een put

33

34 a

35 a

De afgeleide nul stellen levert 5r2—14r3 = 0, dus

r =14/5 = 2,8. De functie krijgt dan de waarde —0,89.

Orde van grootte houdt in dat alleen naar de macht
van 10 wordt gekeken, en niet naar het getal (tussen
o en 1) dat ervoor staat. Invullen van de waarden

voor h, m,, fen e levert dan het gevraagde resultaat.

De afgeleide gelijk aan nul stellen levertr = 2-107.
Afronden op de orde van grootte geeft dus107? m.

Invullen geeft:
p =\2mE, =2 x g -107% x107®

~V10*® =10 kg-m-s”
ris geen gebiedje Ap dat in orde van gr
er is dan p, en waar toch een i eel van het

Hoofdstuk 19: Quantumfysica

§ 19.4 Deeltjes in een put —
T W S T

XBereken het minimum van de functie -5r™" + 7r=.

De in deze bron besproken methoden leveren geen
nauwkeurige resultaten maar zijn wel geschikt om

bijvoorbeeld een ruwe schatting van de orde van

grootte van een systeem te geven.
In de formule voor de energie van het elektron :

W B =
W/) E=omaz T r

nemen we A = r en we kijken alleen naar de orde van

grootte, niet naar precieze waarden. Dit geeft: =

b i [,

e D T Stel ,_@ .

r * 2
\ a Toon dit aan. ¢|2 ld( =

b Bereken bij welke r het minimum van £ berm:{rdt.

I
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§ 19.4 Deeltjes in een put —

B 19.4 Deeltjes in een put

33

34 a

35a

De afgeleide nul stellen levert 5r2—14r3 = o, dus
r = 14/5 = 2,8. De functie krijgt dan de waarde -0,89.

Orde van grootte houdt in dat alleen naar de macht
van 10 wordt gekeken, en niet naar het getal (tussen
o en 1) dat ervoor staat. Invullen van de waarden
voor h, m,, fen e levert dan het gevraagde resultaat.
De afgeleide gelijk aan nul stellen levertr = 21072,
Afronden op de orde van grootte geeft dus 1079 m.

Invullen geeft:
p =+\2mE =42 xg-10% x107®

~ V10 =10 kg-m-s™

Eris geen gebiedje Ap dat in orde van grootte
kleiner is dan p, en waar toch een flink deel van het
golfpakket in past.

Uit de onbepaaldheidsrelatie volgt

h 10733
Axamdus Ax> 0" X 104

35 Uit het spectrum van waterstof kan worden geschat
dat de kinetische energie van het elektron in de
grondtoestand in de orde van 10 ® ) moet zijn. De b
impuls is dan in de ordevan102¢kg-m-s™.

a Toon dit aan. —

olfpakket van het elektron is symmetrisc

impulsw .leg —
uit dat Ap dan van teisalsp
zelf. _

¢ Gebruik de onbepaald

|
impuls en golflengte van versnelde elekirenen F—
I B
i
DeBraglie-goliengte E,cimuts l.f_ N |
van deeltjes k2 2 prVzmcE, |
W ] 2l pemw 2o |
ﬁ - — H— B 2-Myg By — s | ]
P . | (- L]
r - -3 rekenen aan galfideeltje-dualiteit
T anzekerheidsrelatie T gesltie in sen energieput energie impuls i
B van Heisznberg 8 -
J. : o 2L Lt licht E:hf p= S . .
sp2i=  MTE Eegh .
| Axemp o - " Bl dr::kssi:is Erl'mu' [E A
i | | | } } |
| | | | | [ | |
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dat in een blokje metaal opgesloten zit of in een molecuul.
e

16. Een elektron dat opgesloten zit in een waterstofatoom is een voorbeeld
van een deeltje in een energieput. Andere voorbeelden zijn een elektron

| | | | | | | | | | | | | | | | |
Zulke energieputten kunnen 1, 2 of 3-dimensionaal zijn. Voorbeeld

B-Carotene

van een 1D-energieput: een langwerpig molecuul.
e

e, ] s

v

N

\.\‘_‘

ER

buiten het molecuul is er —
elektrische potentiéle

pot

energie tussen het
elektron en het nu positief

— § 19.4 Deeltjes in een put
|

| | |
1-dimensionale

energieputten:

langwerpig molecuul of ~

lange dunne draad
b,

P -
He o

Hoofdstuk 19: Quantumfysica

geladen molecuul
| | | | |

binnenin het molecuul kan het elektron

vrij bewegen en is de elektrische

/potentiéle energie nul dus het elektron
heeft hier alleen kinetische energie

2-dimensionale
energieputten:
laatje grafeen

x5

Metallic Bonding

e \ \J'
| L | eleYelere; 000® |
_ - DDDD D %‘G@Q@
PSR N
OIOCTE IO c%@le% | |
caroteen-molecuul met lengte L P ——— pm————— 3-dimensionale energieputten: atomen

of een blokje metaal
[ [ [
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16 (vervolg). De golffunctie van een elektron in een energieput is als een .
( g) Vee _ e Telep e Hoofdstuk 19: Quantumfysica
staande golf in een snaar die aan twee uiteinden vast zit. De golf in zo'n
snaar zit ook opgesloten, net als een elektron in een atoom of molecuul. §194 DEE|tJll?5 In een put .
] R
- E - A B I
//__\E':;’" grondtoon T ¢ Ei¢ - F--n----.-- - - e e
R gopeEs il [ D O.U n 5 I
s, k= A, eerste boventoon AN AN P l I
& E F I
S . L=2 1, tweede boventoon I
a Figuur 9.20 Grondtoon en boventonen =i -~ =S ﬁ - if """""""""'I
| | | | | | | - Figluur 19.29 SILaa e gol\'ln in 2en snlaal | | | | | l
— — R — R |
Aangeslagen toestanden van het atoom of molecuul kunnen voorgesteld NED f=====1====-1---|
worden als dat de golffunctie van een elektron in een boventoon trilt. Je N3 2 fecdacaiacdenadone
kunt de energie van een toestand uitrekenen met: Fest-
; r -
T AN - X3
21 & \ Let op: in de energieput is
A h N — E n h alle energie van het
: v 2 \ elektron kinetisch, dus ’
n S — - " 8M L voor E, kun je ook Ex BReRE
[ schrijven. . RN
{ \_\ | | | Né[:/fv w
U 7/ — ==z : .
oy ) Let op: in een energieput ... il Lo A YR,
' z /_r__l_ met kleine L liggen de g CH e
il 2 / 2. energieniveaus dus hoger | | 5|6 | | =
‘ L el danin hijgrote L. Infinite Square Well (animatie, wiki)
i i e




Bordoefening 8.

Hoofdstuk 19: Quantumfysica

pob
,}\ YERrE = § 19.4 Deeltjes in een put
d.- A = ]
1 N T A A O O O T
J’-\ Bordoefening 8. Een molecuul beta-caroteen heeft een
i h 6,626 1o - lengte van 17 nm. Reken uit: ‘
S - ~ - a. De golflengte van elektron in de grondtoestand van
v A 34 10'9 ™ i dit molecuul.
5 b. De impuls van het elektron in de grondtoestand.
_ 2 /7 626-;-"“'\ g c. De energie van de grondtoestand.
C N (& il 4 =208 10 ¢ d. De energie van de eerste aangeslagen toestand.
‘ E Qial lO-:“ ’I T3 a\2 ’ e. De golflengte van de uitgezonden EM-straling bij
9' L ? ) -) verval van de eerste aangeslagen toestand naar de
2 grondtoestand.
| et [l e_r .M\ -
1
Aa.
= L al-ol”- 1910 1)
/! N | /
| mpuls enl olflengte van ve 5neldeellektro:|en F—
-22 ‘Zz =Broglis- l engte SI ptjl ’ o fP: r
ok =830 - 20810 h Evim-“z-; Pyl
N + T I : .
ML B T TR IO g ey A==
| (.
- '4 P Bl B rekenen aan galfideeltje-dualiteit 'R
i h.< i _;nzekirh_eidsbrelaue _adeeltjelne energieput Wy energie impuls -
}:._- s_m | B van Heisen :rg-_ i — E-hi p- a_ . .
— L. sskaubiL; O 2 [ it T peme
| - ! L= =
[ B e
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51.6 (Vemolg). De.inzichten aa.ngaande het deelt.je | gdeeljeineenenergieput | Hoofdstuk 19: Quantumfysica
in een 1-dimensionale energieput kunnen ook in 2.1 nt W
drie dimensies beschouwd worden. ] M. Ec=5-G —+ §19.4 Deeltjes in een put B
Voorbeeld 1: : : : I } } } }
TR T T LY 20000 R |
Nt t B SO O P S K T T DODD @ BeOOe .
SIIRIE A I R = R Lol ~ 5k W
N e . lltl ‘3"..“1"_- " : TP S Svem
nzz\ {, et S PR T T S f 3 H 4 3-dimensionale energieputten:
e : y) — s atomen, moleculen of eenblokje |
G——- x --—-) rinas i metaal
|

De totale energie van het elektron in een 3D-energie-put is een optelling

van de energiebijdragen van de x-, y- en z-richtingen:

] iy Bordoefening 9. Een elektron zit opgesloten in een |
. "'""‘*-‘“‘3’ 9- nclhtmg: b e § blokje metaal met afmetingen:
RIS T VR Lk=4,0nm L,=8,0nmen L, =3,0 nm. —
€ L = - \"‘ E,m 2 M| \“ r En.f 2 2 Het elektron is in de laagste energietoestand.
* I 8m fo ‘'l om Lm" p L, a. In welke oriéntatie is de energiebijdrage het grootst?
\ b. In welke oriéntatie liggen de hijdragen aan de |
Optﬂ;'li-e_vl energieniveaus het dichtst bij elkaar?
' c. Als het elektron zich in de y-richtinginden=2 =
/ a91lo 212 sl g L 2 2 toestand bevindt, is de energiebijdrage in die richting |
E' 2 ._l_ { e n . iy L o i ) Ek= T | ¥ P“l+ P:r dan groter of kleiner dan die in de x-richting?
N ik i i . 0 0 O
dNaNE 2% BEEEEERERE




16 (vervolg). Als de n-getallen in een of meerdere dimensies | Hoofdstuk 19: Quantumfysica

groter zijn dan 1 ontstaan er meerdere gebieden waar de

— § 19.4 Deeltjes in een put —

waarschijnlijkheidsverdeling vh elektron groot is.
| | |

Voorbeeld 2: }
Al = wphalt Ol

e | o 4 “. L ils : a 0 . O |
t“itﬂm . / " P . / . e e — il <’ 23 :5 | o

= — m——
. . e [P0 » . - g kE: )
N,= 2 T ) o T I R (N 0 Nx=2 4 Vix= |
~lee v wzer, ¢

E L] F"::‘..“‘. 3 .f i . r\ - r‘ 2}
n‘d- I ; 2 .'-.II B " L] ’ . ! [T ﬁ U
nz = l L . ’,‘,’.’ i = - . 5 ’ I . 5 ” vl]z‘v r‘z"' z

o= 0 ™9 Bordoefening 9. Een elektron zit opgesloten in een |

blokje metaal met afmetingen:
Lk=4,0nmL,=80nmenL, =3,0 nm. —

Het elektron is in de laagste energietoestand.

2. 2] 4 ; z
E- _l__ . (/ "321“2 - "A‘: n . ‘al'"' \) " Dii x-ct:lerrr? Isdfgrc,)ter i c:)ezeld 1 a. In welke oriéntatie is de energiebijdrage het grootst?
kT lom Y L‘: Y : 4 [__2' » SEatIE Can I _'e Ll 'ee b. In welke oriéntatie liggen de energieniveaus het ||
7 = /- omdat n, hier groter is. dichtst bij elkaar?
7 c. Als het elektron in de y-richting in de n = 2 toestand —
} \ bevindt, is de energiebijdrage in die tichting dan groter

of kleiner dan die in de x-richting?

|
1 ol REnEEERREE
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16 (vervolg). De totale energie van het elektron in de 3D-

energieput hangt ook af van de afmetingen van de put.

Hoofdstuk 19: Quantumfysica

§ 19.4 Deeltjes in een put —
Voorbeeld 3: } } } } } } } } } } }
Bordoefening 9. Een elektron zit opgesloten in een
blokje metaal met afmetingen: B
Lk=40nmL,=8,0nmenlL,=3,0nm. ||
Mmd: —> \ ol I . Het elektron is in de laagste energietoestand.
5“ :_.’,: — ¥ a. In welke oriéntatie is de energiebijdrage het grootst? —
o T \ g ..!'. EREY: . é\émdere energieput met b. In welke oriéntatie liggen de energieniveaus het
L T I T _ .. dichtst bij elkaar? B
K : f b ‘..'-."':.' o, een kleinere afmeting in _c. Als het elektron in de y-richting in de n =2 toestand
Nz~ \ u/ ‘,-" « | 2 Lt 7 de x-richting. bevindt, is de energiebijdrage in die tichting dan groter
- 4 ‘é of kleiner dan die in de x-richting? —
¢ X —>
1 / N : t’:‘ﬁl N, r“nl \
De x-term is hier groter Ek = y { Tz 42 i lyil-2 \
dan in voorbeeld 1 omdat <0 \__;l K ! L’ﬁl A2/

L. hierkleineris. "




In de grondtoestand heeft het deeltje alleen kinetische energie omdat de potentiele

energie nul is. In het Bohr-model was dit de zogenaamde nulpuntsenergie.

=/ N)
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§ 19.4 Deeltjes in een put

£ oL [raK  nik +——"‘2L‘:—)
kmam \ 4L 4L, 4l /T

GLa 2k 2.0 16
2 N I =120 th
! h 666.16”" 2 |
). | pz—=L = 33310 2 ka™/ T | nh”
" = ] -6 P79 kﬁ' (S 1“= . hn —— Efm -
2 2.0 [O n P_ 2'... | |
.b_ . — z
’ STAL Ta Bl gmy® EF?
AR ANC T AP
ﬂ' 2 m - 2 -3 = et lc
9[““0 l il Bdeeltjeineenenergieput e
: : 2L n? "
Nuttige opgaven uit hoofdstuk: 4, 14, 16, 22, 23, n-—-—n-— E,ﬁ ~vori I

25, 27, 29, 30, 31, 353, 37, 38ab, 39, 41, 42, 43, 46,

| | | | | | | |
36 a Leg uit dat de nulpuntsenergie van het deeltje in een
energieput gelijk is aan de energie in de grondtoe-
stand.
%Leg uit dat geldt dat £, = n’E..

37 Een elektron kan vrij bewegen binnen een metalen
blokje met in de x-richting een lengte van 10 ym.
Beschouw het elektron als een staande golf in het
blokje.

a Hoe groot is in de x-richting de maximale golflengte
A.van het elektron?

b Bereken de minimale impuls p. in x-richting.

¢ Bereken de kinetische energie van de beweging in de
x-richting.

d De totale kinetische energie wordt gegeven door

g - P _pitpitpy
KT 2m 2m

Het blokje heeft in de y-richting een lengte van
100 pm en in de z-richting een lengte van 1,0 pm.
Bereken de kinetische energie van de bewegingen in
de x-richting en de bewegingen in de y-richting.

e Bereken de minimale waarde van de totale
kinetische energie.

48, 49, 5o en alle toepassingen. CE's vanaf 2016. ‘ ‘ ‘ ‘ ‘ ‘
| | | | | | | | | |
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— § 19.4 Deeltjes in een put —

i

[ LAt &

ny='

| | | | | | | | | |
36 a Leg uit dat de nulpuntsenergie van het deeltje in een

ny=' l{ .‘.

1 energieput gelijk is aan de energie in de grondtoe-
Q?' stand.
%Leg uit dat geldt dat £, = n’E.. ]
3
37 Een elektron kan vrij bewegen binnen een metalen ]
. ‘g/ blokje met in de x-richting een lengte va '
37 a De breedte van het blokje is minimaal o,5 golfleng- 9, Beschouw het elektron als een staande golf in het ]
te. De maximale golflengte is dan 20 pm. \"/ blokje.
b Invullenvan i =20 pminp, = ?geef‘t o/ a Hoe groot is in de x-richting de maximale golflengte |
p, = 3,310 kg-m-s~ ) } A van het elektron?
b Bereken de minimale impuls p. in x-richting. ]
¢ E= % enp*=p2+ P; +p? — - c Ei;g:;::e kinetische energie van de beweging in de |
De bijdrage van p, is dus '\j/ R\‘ //- I d De totale kinetischienergie wordt gegeven door a
_P_pitptp:
2(?(,39. :10-1193:‘31 = 6,010 ﬁ a& ( _% = I‘)' L-x M= 2m 2m —
\-..._______.,< Hef blokje heeft in de y-richting een lengte van
d bijdrage p,: 6,0-107%°] -.-') n in de z-richting een lengte van 1,0 pm. =
bijdrage p,: 6,0-107¢) . ' Bereken de kinetische energie van de bewegingen in
e kinetische energie totaal: 6,0 - 1072 J - Nuttige opgaven uit hoofdstuk: 4, 14, —— de x-richting en de bewegingen in de y-richting. s
16, 22, 23, 25, 27, 29, 39, 31, 353, 37, 38ab, e Bereken de minimale waarde van de totale

kinetische energie.
39, 41, 42, 43, 46, 48, 49, 5o en alle

toepassingen. CE's vanaf 2016. i i i i i i i i i i i
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1]
i
NI

| ]

100 pm

=

)W)

mogelijke energietoestand.

100 pm =1-10"m.

r Hat hatraft can ctaanda anlf die hat navunla ic vian

38 Een elektron kan vrij bewegen door een zilverdraadje
dat stilligt langs de x-as. Het draadje heeft een lengte
van 100 pm en het elektron bevindt zich in de laagst

e C}?Z 80 V i a Bereken de golflengte A, in de x-richting.
[ ! b Geef met behulp van de golflengte een schatting
van de onbepaaldheid Ax.
XLeg uit dat de elektronengolf de som moet zijn van
h
een golf metp, = + 7. eneen metp, = — 7. &n
geef een schatting van de onbepaaldheid Ap..
XLaat zien dat er is voldaan aan de onbepaaldheids-
relatie van Heisenberg.
| . | | e — —— |
! .4 impuls en golflengte \;an versnelde elektronen
e ||| Bkt D pVERE
: ’ S h
38 a De golflengte is maximaal 2 x de lengte van het L L ey h | i~
draadje’ dus 200 Pm' B [ . P B [ ‘ B rekenenaan golfideeltje-dualiteit
b Wat kleinerwant de waarschijnlijkheid piekt in het e e | | P e | el i
" : aid E — 1 'Jl=& E—ﬁ liekt E:-h§ PE’I
midden en is bij de rand heel klein, dus ongeveer U axap2irl M SR || T [ Eimet | peee




39 a Zie onderstaand figuur.

n-l—/_\

NN . W i,

e

b Invullen in de formule voor de energie geeft:

h? (6,63 -107°)

E = = — 610 3 10“2‘J
' 8ml* 8 xg9m x-107%x (1,0-1079)?

E,=22E =2,4-10™)
CE=E-FE=15-w0™]
f=%= 2,7+10% Hz

d Dit is straling in het ver infrarood.

Hoofdstuk 19: Quantumfysica

§ 19.4 Deeltjes in een put
I O L L

39 In figuur 19.30 worden drie golftoestanden weergege-
ven van een elektron in een energieput.

4 Figuur 19.30

a Neem de figuur over en schets bij elk van de toe-
standen de bijbehorende kansverdeling om het
deeltje aan te treffen, als je in de put een plaatsme-
ting zou doen.

b De energieput heeft een lengte van 1,0 nm. Bereken
de energie £, van de grondtoestand en de energie E,
van de eerste aangeslagen toestand.

¢ Een elektron vervalt van E, naar E,, onder uitzending
van een foton. Bereken de frequentie van dit foton.

d In welk deel van het spectrum wordt deze straling
uitgezonden?
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16 (vervolg). In een atoom anders dan waterstof of in molculen zitten

meerdere elektronen. De elektronen vullen de onderste energieniveau's

(max. 2 per niveau) en alleen de elektronen uit de hogere, gevulde

Hoofdstuk 19: Quantumfysica

§ 19.4 Deeltjes in een put

energieniveau's springen doorgaans naar nog hogere, lege niveau's.

| | | | | | Bordoefening 10. Een bepaald molecuul met een
koolstofatoom, koolstofatoom, 2 =
; . lengte van 12,0 nm heeft zeven elektronen die er vrij
aagst mogelijke hogere
koolstofatoom doorheen kunnen bewegen.
aangeslagen aangeslagen . .
grondtoestand ioeciamd i a. Teken een diagram van de grondtoestand van dit
molecuul.
b. Bereken de energie die nodig is om dit molecuul
"|_5 n_5| |n_5 » vanuit de grondtoestand aan te slaan naar de laagst
— o= o D=6 mogelijke aangeslagen toestand.
| _— |
n=3 =3 @ n=3 L
| _— |
= n=2 e n-_> —@ w: g
| ] | ’
M=l n=1 — @ n=1 9—@ Y‘...-i
| i A D
o ] 5 " |
deeltje i ieput : e ‘
eeltje in een energiepu .
G to dansloan: o aa V\Shwﬂ'\ : < | |
2L n? h* ik
Tas= i OB:E £ AEE el
n " 8mlt 4 3 niklik |




| | —

= koolstofatoom, deeltje in een energieput v .
e m ! giep ‘\} Hoofdstuk 19: Quantumfysica
koolstofatoom, S hGEeragen 4 21 2 |8 Iti . |
grondtoestand sy ln-— _Z_E E . n lﬂ } §‘19-T De\e tj‘eS |n‘ EET pu‘t ‘ ‘ ‘ ‘
I"“8""‘L]L’|||||||||||
n=g m=g Bordoefening 10. Een bepaald molecuul met een
| | lengte van 12,0 nm heeft zeven elektronen die er vrij
= = o o doorheen kunnen bewegen. | |
n|= = *—o—- = =|3 Py a. Teken een diagram van de grondtoestand van dit
| | molecuul. =
n=2 —.—L—- n=2 o —e J b. Bereken de energie die nodig is om dit molecuul
| | l[ vanuit de grondtoestand aan te slaan naar de laagst
nst *—e St o—— mogelijke aangeslagen toestand. | |
Bordoefening 10 1 !
2 . ]
5 Y \ 2 \ ~1 n—'—'—s.—‘
I 12 [ B RK I \ i -G
%: 4 = | p ) 3 i Ly |
) _=9\94 / T e
i) (Zgo) 5
\ . N9
2 ’A njc [ &
2l 9\ s Phast e N=|
6,62610 ] ) b \-20_‘\ NE :
|1 g, Wl — _} =
& ?‘[gg-‘ﬁi‘ R T A
i




17 en 18. Het deeltje-in-een-energieputmodel kan gebruikt

Hoofdstuk 19: Quantumfysica

worden om een ruwe bepaling te doen van de grootte van

energieputten (zoals langwerpige moleculen). L L S a

- 14

a2 C c ! [ div i

(=]

A\

= W b B 4
= |y OeV =107 D

F WY
L

13 n=3

1
(]
L

1e aangeslagerl toestand

= 10

Ienargj'e ineV—
1
-8
1
3
[ ]
L%

2\ & 2 1|2 2 I_ n

ﬂ‘ N

I ¥ ; ™ i
3 L nh i N kun je| n o V L
Sm * Smi? m !__2 . | Uibrekenen l0e e
[2 N= | . T

f _‘s - r 13,6 grondtoestand —
‘l 2z 3 ( ’926"{> ‘{) — 1! A‘ Figuur 12.3‘}' Energ‘ieniveTuschera van‘waters‘tof ‘ o E—

- ~3) = = AR
.. AE ] qﬂu.lo 110 9 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Bordoefening 11. Stel je een waterstofatoom voor als —
een ééndimensionale energieput. Bereken de lengte

N ("de diameter") van het waterstofatoom m.b.v. de

gegevens op deze pagina.

‘.:_
S
|

Zoek de straal r van het waterstofatoom op in Binas en —
bedenk of een ééndimensionale energieput een goede

benadering is.
| | | | | | | | | | |




Bordoefening 8 (opnieuw).

§ 19.4 Deeltjes in een put
L O L N

lengte van 17 nm. Reken uit:

ILEE

a. De golflengte van elektron in de grondtoestand van

dit molecuul.

b. De impuls en energie van het elekt

grondtoestand.
c. De energie van de grondtoestand.

Hoofdstuk 19: Quantumfysica

ron in deze

d. De energie van de eerste aangeslagen toestand.

verval van de eerste aangeslagen toe

grondtoestand. .
| | eertten 25"

7|-:3 n|m elektron en in
| |

e. De golflengte van de uitgezonden EM-straling bij

stand naar de

mobijele"
Caroteen

van deeltjes

| B impuls en golflengte van versnelde elekirenen
i

DeBroglie-gelfiengte Ek= 12 mut s %f_ pe \amE,
w

Bordoefening 8. Een molecuul beta-caroteen heeft een —

T [ T h h
h =2 pewmu As
A== [ v T Vim &
| |
P - -3 rekenen aan galfideeltje-dualiteit

T onzekerheidsrelatie
B van Heisznberg

| 9..2b
| | M&pZW_ "

§ 8 deeltje in een energieput

Enargie

impuls

Wt T

licht

E:h¢

Ll

Gy

" Bl ||

massa
deeltjes

E‘ glwm'1

pPzmuws
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e
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526.
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41 Lees eerst bron 19.

Spectraallijnen van grote moleculen liggen vooral in
het infrarode en zichtbare deel van het spectrum, die
van atomen grotendeels in het ultraviolet.
Atoomkernen zenden gammastraling uit.

De frequenties van de spectraallijnen nemen blijkbaar
toe naarmate de lichamen die ze uitzenden kleiner
worden. Geef hiervoor een verklaring.

a Waarom kun je verwachten dat in grotere moleculen

energieniveaus met kleinere verschillen bestaan?

b Atomen zenden bij energie-overgangen fotonen uit
met een energie van enkele eV. Geef met behulp van
het model uit bron 16 een schatting van de grootte
van een atoom.

¢ Atoomkernen zenden y-fotonen uit, met een energie

van enkele MeV. Schat de grootte van een atoomkern.

V.

631

P i

~13




F:r—

| [
S S = 5 deeltje in een energieput Hoofdstuk 19: Quantumfysica
SOECD ¢ =
P - k =5 9. n h* § 19.4 Deeltjes in een put —
N kM I . I o

CoHs CoHs n s 3m Ll 42 Lees voor deze opdracht eerst bron 19 en maak gebruik
van het daar vermelde gegeven dat er in iedere
afzonderlijke quantumtoestand maximaal twee
elektronen passen. Gebruik voor deze opdracht de

7\

a Figuur 19.32

y gegevens uit tabel 19.33 voor het molecuul met k = 1.
- %W{ IF: . i t . = Hl’m a Leg uit dat de onderste vier niveaus volledig bezet _
= 5 - lf i zijn als het molecuul zich in zijn laagste energietoe-
stand bevindt. —
2 7z 1 b Bereken het energieverschil tussen het vierde en het
q° / - '9 — \ vijfde niveau. —
= -— . ¢ Bereken de golflengte van een foton dat wordt c
EH 2 ) O c ken de golfleng foton d d
™ (l ) | DT = geabsorbeerd als een elektron van het vierde naar =
! p - het vijfde energieniveau gaat.
N Q1A 2 B
~ 22 8 o |\ 3310 3 [l ool o
L™ - < ]JO-10 ) Lin |hfineV |hfinev
s 7 | \2. / ] J k(M= nm berekend | gemeten kbowr
m (Y 1‘.) 0 0,9 3,24 2,95 geel
¢ Q
=3 S 1 1,2 2,35 2,25 rood
A h C én‘ 626 O ¢ 3,00' (o} - 2 | 10 | 15 1,84 1,91 blauw
=~ T - = T 3 12 1,8 1,51 1,63 groen
A pPE -10| ., i .),2‘ O 4| 14 | 21 1,28 1,43 -
C ~ '5' A0 7 -) 5| 16 | 24 1,11 12 | -
D& —\* ¥ —‘— a Tabel 19.33
[ T N A NN (N
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§ 19.4 Deeltjes in een put

43 De buitenste elektronen van een bepaald molecuul
gedragen zich in goede benadering als elektronen in
een energieput. De energieput is 4,0 nm lang en er
bevinden zich 7 elektronen in.

a Bepaal de grondtoestand van het systeem. Dat wil
zeggen, leg uit hoe de elektronen verdeeld zijn over
de energieniveaus als de totale energie minimaal is.
Gebruik hierbij het gegeven dat er in een quantum-
toestand maximaal twee elektronen passen (zie ook

®
gl-O

<

2]

!

\—

b Bereken de energie van de grondtoestand.

¢ De belangrijkste spectraallijn van de stof komt
overeen met het verschil tussen de grondtoestand
en de eerste aangeslagen toestand. Bereken de
golflengte van deze spectraallijn.

o

L d

o i

e

AMinimamla dmdala Aamavaia haiiAe (i Aad A sAviAAl



44 Golflengten: gebruik van 4 = hc vesulteert voor de

Hoofdstuk 19: Quantumfysica

§ 19.4 Deeltjes in een put

E
gemeten golflengten in: f

869 nmvoork =4

1003 NM voor k = §

Deze golflengten liggen in het IR en zorgen zodoen-
de niet voor een zichtbare kleur van de stof.

4’1’ 14]’ 161' 22]’ 23]’ 251’ 27]’ 291’ 301' 311'

Nuttige opgaven vit hoofdstuk: |

353, 37,38ab, 39, 41, 42, 43, 46,48, |

43 De buitenste elektronen van een bepaald molecuul
gedragen zich in goede benadering als elektronen in
een energieput. De energieput is 4,0 nm lang en er
bevinden zich 7 elektronen in.

a Bepaal de grondtoestand van het systeem. Dat wil
zeggen, leg uit hoe de elektronen verdeeld zijn over
de energieniveaus als de totale energie minimaal is.
Gebruik hierbij het gegeven dat er in een quantum-
toestand maximaal twee elektronen passen (zie ook
bron 19).

b Bereken de energie van de grondtoestand.

¢ De belangrijkste spectraallijn van de stof komt
overeen met het verschil tussen de grondtoestand
en de eerste aangeslagen toestand. Bereken de
golflengte van deze spectraallijn.

44 Bereken welke golflengten worden geabsorbeerd door
stoffen met k = 4 en k = 5 in tabel 19.33 en leg uit
waarom er bij die stoffen geen kleur vermeld staat.

49, 5o en alle toepassingen. CE's

vanaf 2016.



§ 19.5 Quantum

20. Een realistischer variant van het deeltje-in-een-energieputmodel is de put met eindig hoge

1 ey
tunnelen

"wanden". In zo'n energieput kan de golffunctie van een elektron een beetje doordringen in

de wanden en zo op plaatsen komen waar het eigenlijk de energie niet voor heeft.

Hoofdstuk 19: Quantumfysica

\ Comparison of infinite and finite potential wells

Electron in finite square well

(2=2 nm and V=1.0 eV)
v}

n=4

L.0eV
E1 ——1En . =S
The wave t'unmm"‘-\__/ \/
ob ob— xtends into the
I I I _'|:|\.\i|::||l‘\- 1’m'|_\j.‘l|h:n /\ /_\
region.
N 2T Lenaanta. mmdmmafeane | W) el ... _______i____ E, = 0585 eV i \/ .
E, = 0263 eV
E, = 0068 eV
eV

=~ 1] 1 2 3

TR=1

—X (nm)

Infinite potential well

(@a=2nm and V=)
i ifilx) i Thisway
? = function is zero
at the edge of ——

,the box.

w

E, = 0848 ¢V

\

E, =0377eV

E,=0094eV

—_———x(nm)

0 1 2 —

& ! |
oneindig diepe put: | eindig diepe put: golffunctie dringt een beetje door in de wanden ——Let op: Dit zijn samengestelde figuren van een energieput met niveau
golffunctie houdt op bij de van de put wat betekent dat het deeltje een "beetje" de put uit kan. n =2 aangegeven en daaroverheen getekend in oranje of geel hoe de

wanden van de put. Deeltje
kan put absoluut niet uit.

@ Buiten de put of in de wanden van de put neemt de
golffuctie exponentieel af met de afstand, binnen de
put is de golffunctie een sinusoide.

e Hoe dichter het energieniveau van een elektron

bij de bovenkant van de put zit, hoe dieper de
functie buiten de put kan doordringen.

nth*
En= e
Gl

golffunctie van een deeltje in die toestand er uit ziet.

g deeltje in een energieput




a Figuur 19.35
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§ 19.5 Quantumtunnelen —
| | | | | | | | | | |

Opdrachten

46 a Leg uit welk quantumgetal n hoort bij de toestand
van het deeltje in figuur 19.35.
b Welke kans is groter, de kans om het deeltje precies

in het midden aan te treffen of net buiten de doos

waarin het opgesloten zit? =

« Figuur 19,29 Staande golven in een snaar




olccunctie
J 1]
—

48 aen b Zie onderstaand figuur.

[\ [\

§ 19.5 Quantumtunnelen
T T T I

een deeltje in een energieput.

|_c. De sinusoide gaat

hier over in een

exponentiéle functie.

N

/‘

a Figuur 19.36

a Schets de waarschijnlijkheidsverdeling om het
deeltje bij een plaatsmeting aan te treffen.

b Neem de figuur over en geef aan waar zich de rand

van de energieput (ongeveer) bevindt.

¢ Schat aan de hand van je schets de kans om het
deeltje buiten de energieput aan te treffen.

¢ Schatting: rond de 15%.

ST

PRy

48 Figuur19.42 is een voorstelling van de golffunctie van

Hoofdstuk 19: Quantumfysica
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| | | | | | | | | | | | |
22. De Epot/x-grafiek (dus de vorm van de energieput) kan :
allerlei vormen hebben, afthankelijk van het verschijnsel. Hoofdstuk 19: Quantumfysica
I : § 19.5 Quantumtunnelen —
~— | | | | i B-Carotene |
t 1T I I m I l o ) " o,
Y o e | . g
00 00 | :\ @ :
' ' AL e | I
| ! |
| ' |
X I X
oneindige energieput eindige energieput
(bijv. langwerpig (bijv. langwerpig molecuul, _
molecuul) realistischer) Transmon/
- { F
EN EN i
pot / ot | I
\ |
X L)
= I x=0 repru:nsenl::;m?uilibm;p —
separal een the nuchel.
X1 | | X
parabolische put
(binding tussen twee atomen) dunne energiebarriere —
‘ (isolerende ruimte tussen metalen delen
‘ in computerchip) —




22 (vervolg). Als een energiebarriere dun genoeg is en de golffunctie van een deeltje
ver genoeg reikt kan het deeltje spontaan door de barriere heen tunnelen. Dit heet

het tunneleffect. Kenmerken van het tunneleffect:

Hoofdstuk 19: Quantumfysica

— § 19.5 Quantumtunnelen

| | | | | | | | | | | | | | | | | |
1. De amplitude van de golffunctie neemt af tijdens het tunnelen en wat er na de barriere
nog van over is wordt de nieuwe amplitude van de golffunctie. Als de barriere breed is
Zal deta mplltutdeﬁna de bkalr(:igre‘ klein zijn. Dit betekent dat de kans om het deeltje buiten alc\“lflsdh¢“ kfa.CW‘:.
e put aan te treffen oo Iem is. | | | | agi‘!:bfbénd )
smalle barriere: brede barriere: i \ ‘
amplitude weinig amplitude neemt \ %
afgenomen buiten de put sterk af buiten de put P
| | e =~
' ! = J” - Ty
r | 3 [ /,‘ég_,,f" {
E2 N I M [\ [ EMm o , f& |
pep || : , \ L J N R : | /‘\\J/ " J
Ll ! ! : !\\ ] I /1/ N "‘:‘
v L] L] - l
l [ l [ (
[ | | M 3 3 3
: i i | = E | i | sterkce kernkyacht
Ll X X .
-l (oantiekien ﬂ)
Voorbeeld van een kleine kans op tunnelen: alfaverval
met een grote halfwaardetijd: elke afzonderlijke kern
heeft maar een kleine kans om het verval te ondergaan _
omdat de energiebarriére van die isotoop breed is.




2. Als een deeltje door het tunneleffect ergens terechtkomt

Hoofdstuk 19: Quantumfysica

waar de potentiele energie lager is zal het deeltje daardoor tot tP‘k t tk’
kinetische energie winnen. Hierdoor heeft het in de nieuwe § 19.5 Quantumtunnelen |
omgeving dus een kleinere golflengte. L ‘ ‘ ‘ ‘
My,
2 WaNT I -
Ny
, Wl E P DeBroglie-golflengte

2 v

vandeeltjes

pdb P
|
B 7 "
) ‘\i1 4 1
W AREAV 8t \ ==
l ! withoul enzyme pesl
I activation _
I energy without
I .)C " Enzyme activation S
energy with — T
enzyme

Energy

reactants overall energy

released during
reaction

e.g. CeHiz0:+ 05

products
CO,+H,0

Reaction coordinate
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. "
S il
TRV
a Figuur 19.38
A - -
O L O O
i .
s PLELIL

a Figuur 19.39

i e oo

Opdrachten

49 a Leg kort uit wat het verschil is tussen figuur 19.39 en
figuur19.38.

A
VAVAY

-

4 Figuur 19.39

b Is de golflengte van de ontsnappende golf in
figuur 19.39 groter of kleiner dan die van de opge-
sloten golf?

¢ Teken de ontsnappende golf. Let er hierbij op dat de
golf netjes en zonder knik moet aansluiten op de

olf aan het eind van de barriére.
ﬁal het quantumdeeltje, vergeleken met de situatie
figuur19.38, sneller, even snel of minder snel

verdwijnen uit het energieputje? Verklaar je antwoord.

©v

"N




daltvisdne Kyache Hoofdstuk 19: Quantumfysica

§ 19.5 Quantumtunnelen —
| | | | | | |

50 In een atoomkern worden de protonen en neutronen
bij elkaar gehouden door een kracht die de sterke
kernkracht wordt genoemd, en die op korte afstand

sterker is dan de afstotende elektrische kracht tussen
de protonen (zie hiervoor hoofdstuk 14). Op grotere
afstand wint de elektrische kracht het echter.

energie in MeV —

10

UW

nargia in Maly —
eeg’leme\l‘

0

0 |10 20 30 40

afstand tot het midden in 10™*°> m —

0 10 20 30 40

- we W - afstand tot het midden in 107" m —
A Flguur 19'40 De Zwarte h]n Stel‘t de pOtent]el'e energ1e e a Figuur 19.40 De zwarte lijn stelt de potentiéle energie

voor. De rode lijn is de golffunctie.

voor. De rode lijn is de golffunctie.

Voor positieve deeltjes binnen de kern ontstaat
zodoende een energieput, die ongeveer de vorm heeft

— i 'b-' zoals weergegeven in figuur 19.40.
. . Binnen atoomkernen vormen eenheden van twee
[} e q '1 c r ot s !Q M neutronen en twee protonen samen deeltjes die uit de
L. JJ ] put kunnen ontsnappen. Dit zorgt voor een vorm van

radioactief verval die besproken is in hoofdstuk 13.
a Welk soort radioactief verval is dit?

b Hoe heet het ontsnappende deeltje?
Bij de kernen die deze vorm van verval vertonen zijn
de verschillen in de halveringstijden enorm. Zoek

n

tussen de kernen die voorkomen in Binas de kern
met de grootste en die met de kleinste halverings-
tijd voor dit verval.

d De halveringstijden die je bij vraag c hebt gevonden
verschillen enorm. Wat zegt dit over de hoogte enfof
breedte van de wand van de energieput bij verschil-

lende soorten kernen?
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23. Een scanningtunnelingmicroscoop maakt een opname Hoofdstuk 19: Quantumfysica

van een preparaat door met een fijne naald het oppervlak af

§ 19.5 Quantumtunnelen —

te tasten en te kijken hoe hoog het oppervlak is.
| | | | | | | | | |

constante hoogte

constante
tunnelstroom

preparaat

a Figuur 19.43
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§ 19.5 Quantumtunnelen —
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51 Bij het aftasten van het oppervlak van een preparaat
kan worden gekozen tussen twee manieren:

1 de punt wordt horizontaal over het oppervlak van —r—
het preparaat bewogen en de afstand tot de

ondergrond wordt bepaald uit de veranderingvan ~ ——F——
de tunnelstroom;
2 de punt wordt zodanig over het oppervlak bewogen |

dat de tunnelstroom voortdurend constant blijft. De
hoogte van elk punt van het preparaat wordt

bepaald uit de stuursignalen die nodig zijn om de
stroomsterkte constant te houden.

t
il constante hoogte

T —

ANNA
— o —

constante

tunnelstroom S| —
a De tunnelstroom hangt exponentieel af van de i 1 S

afstand: | = Ce™". Leg uit waarom dit zo is. P
b Meestal wordt gekozen voor het constant houden —— X—~ _—

van de stroom. Bedenk een belangrijk voordeel B
hiervan (behalve dat het ook nauwkeuriger is). T a Figuur 19.43 —




| 52 De punt van een tunnelmicroscoop oefent ook kracht

uit op de atomen in het preparaat. In het laboratorium
van IBM, waar tunnelmicroscopie is uitgevonden, zijn
onderzoekers erin geslaagd om met deze kracht stapje
voor stapije ijzeratomen op een koperoppervlak zo te
bewegen dat er een cirkel werd gevormd.

Zie figuur19.44

[ Figuur 19.44

Figuur 19.34 is een wat chiquer opgemaakte versie van
het vierde plaatje van figuur 19.44. Gebruik die figuur
bij het maken van deze opdracht.

Binnen de cirkel zie je een golfpatroon. Dit zijn

staande golven van één of meer elektronen in het

koperoppervlak.

a Leg uit hoe deze cirkelvormige staande golven
kunnen ontstaan.

b Zit er in het midden van de cirkel een maximum
(buik) of een minimum (knoop)?

¢ Trek een lijn van links naar rechts door het midden
van de cirkel. Hoeveel buiken en hoeveel knopen
kom je tegen op deze lijn?

d Hoeveel golflengten zitten er op de lijn?

e Schets het verloop van de golffunctie langs de lijn.

f De STM meet de elektronendichtheid in het opper-
vlak met behulp van een tunnelstroom, dus door er
steeds elektronen uit weg te trekken. Hoe kan er dan
toch een betrouwbare opname van het hele opper-
vlak tot stand komen?

Hoofdstuk 19: Quantumfysica

§ 19.5 Quantumtunnelen
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- Opgave 1 Fluorescentiemicroscoop (naar schoolexamen vwo PMN 2006-I)

H Oofd St U k 1 9 : O U a ntU m fy S I C a Met een fluorescentiemicroscoop kunnen processen in levende weefsels worden gevolgd. In de cellen
van het weefsel wordt daartoe een zogenaamde flucrescerende kleurstof aangebracht. De moleculen

van zo'n stof kunnen worden aangeslagen door bestraling met licht. Ze vallen rechtstreeks of via één of

meer tussenniveaus terug naar hun grondtoestand.

halfdoorlatende spiegel .

°)
M
"
n
{

T
N
>
o0
3
)
E
)

2 E.
y % N
@. 9)-10 =y fq -10 'D) g deeltje in een energieput exctatifiter |

AW - % <l [ == lens =
2L nth

= e—— E—

4
' 2 " -O g n n 8M Ll weefsel /

"_—:n.aaq-o A — — —

N ] a b
! | | | & Figuur 19.45
——1 Hierboven is de werking van de fluorescentiemicroscoop schematisch weergegeven.
' Nuttige vragen van T . A
- ) - 19 - 5 + In figuur 19.45a is de weg aangegeven van het licht waarmee het weefsel wordt bestraald. Het licht
F_ flz a 1 l zc e 4 S r de toepass"ngen van de bron wordt eerst door een zogenaamd excitatiefilter geleid, zodat de kleur waarmee het
|- = e I 2 =1 ) o Ba o L van h fd 1 9 - 1 2 3 I weefsel wordt aangestraald kan worden gekozen. Het licht wordt vervelgens door een halfdoorla-
5 J I 7 Sn T e ) tende spiegel gereflecteerd en door een lens op het weefsel gefocusseerd.
6 7 8 9 1 2 13 « In figuur 19.45b is de weg weergegeven van het licht dat door de fluorescerende stof wordt terugge-
2T 7 © zonden. Het gaat door de lens, de halfdoorlatende spiegel en een sperfilter naar een detector. Met
r ‘-ZQ - 18 18’ 19, 20' het sperfilter kan é&n van de teruggezonden kleuren worden geselecteerd. De geselecteerde kleur is

een andere dan die van het licht waarmee het weefsel is aangestraald.

o Leg uit of bij fluorescentie het sperfilter grotere, kleinere of even grote golflengten moet doorlaten
vergeleken met het excitatiefilter.

A

We stellen ons een molecuul van de fluorescerende stof voor als een ééndimensionale energieput
5 . met een lengte L van 9,8 107" m, De energietoestanden die een elektron kan bezetten worden

aangegeven met het quantumgetaln(n=1,2,3,4,..).

pﬁ'
m
L]
(o)
5
i
&
|
N
o~
9,
S
AL
m
iy
6.'_

—) 2 Bereken de frequentie van het licht waarmee de stof aangestraald zou moeten worden om een
elektron vanuit de toestand n = 3 naar de toestand n = 4 te exciteren.

Ln §




In figuur19.46 is de golffunctie ¥als

HOOdetUk 19 : O Ua ﬂtU m fYS I C a functie van de plaats in de energieput

geschetst voor de toestand met n = 3.

W

w

Maak een schets van de golffunctie ¥ voor
de toestand n = 4. Leg aan de hand van xow
deze schets uit of de kans om het elektran

S
W
W

3 ¥ in het midden van de energieput aan te
l r} | \ X \ \ treffen verandert bij de overgang van

n=3naarn = 4.

AT' \ \ a Figuur 19.46
In de energieput zitten in totaal zes elektronen. Onder de energie van het molecuul verstaan we hier
nu de totale energie van de zes elektronen. In figuur 19.47 zijn de laagste drie energietoestanden van
\ “'—) het energiespectrum van het molecuul weergegeven. In iedere toestand passen twee elektronen, De

getallen naast de energietoestanden geven aan hoeveel keer h*/8ml* de energie van de betreffende
\ / toestand is.
& &L._._“ Deze getallen kunnen worden gevonden door voor elk van de drie energieniveaus na te gaan hoe de
wi - ‘f zes elektronen zijn verdeeld over de toestanden n (n =1, 2, 3, 4, ...) die een elektron kan bezetten.

In een tabel zoals naast figuur 19.47 kan voor elk energieniveau het aantal elektronen in een bepaalde

toestand n worden ingevuld,

E (in h*/8mL?) (in .PJZ,.ESmL",I n=1 n=2 n=3 n=4 n=5

N - = 40 - 28
* r_ flle \ 35 —_— 35
| ]
i ! 28 S 40
. . I 1 \ a Figuur 19.47
> W J . 4 Wul de tabel helemaal in en ga door berekening na dat de gegeven energieen van het energieniveau-
T eE——.

schema van figuur 19.47 kloppen,

x_.é In een bepaald experiment wordt de fluorescerende stof aangestraald met fotonen die een energie
wvan 12 keer i?/8mL* hebben.

o Leg uit met behulp van figuur 19.47 hoeveel verschillende frequenties de fluorescerende stof uitzendt

naar het sperfilter in dit experiment.




In figuur19.46 is de golffunctie ¥als
functie van de plaats in de energieput
geschetst voor de toestand met n = 3.
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Maak een schets van de golffunctie ¥ voor ]
de toestand n = 4. Leg aan de hand van xo.

deze schets uit of de kans om het elektran
| in het midden van de energieput aan te ]
treffen verandert bij de overgang van
A=3naarn=4.
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a Figuur 19,46
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In de energieput zitten in totaal zes elektronen. Ondler de energie van het molecuul verstaan we hier —
nu de totale en Ergie van de zes elektronen. In figuur 19.47 zijn de laagste drie energietoestanden van
het energiespectrum van het molecuul weergegeven. In iedere toestand passen twee elektronen. De

getallen naast de energietoestanden geven aan hoeveel keer h*/8ml* de energie van de betreffende —
toestand is.

zes elektronen zijn verdeeld over de toestanden n (n =1, 2, 3, 4, ...) die een elektron kan bezetten.

} i 5, 2 \ Deze getallen kunnen worden gevonden door voor elk van de drie energieniveaus na te gaan hoe de —
qramdtaestanq Lol

PAFL I I 1 In een tabel zoals naast figuur1 ki Ik ieni het aantal elekt i b Id
I rol 5 guur 19.47 kan voor elk energieniveau het aantal elektronen in een bepaalde —
WL le(‘u LUl W‘z u‘ . toestand n worden ingevuld.
fhe Y ‘=I..= 2 F,.Ll'l 1o u " lul_ £ E —
i) Lo g E (in h/8mL?) (nmampy | "1 | p=2 | n=3 | ned | nes
1
= -——a— = < 2 - 2
p=3 23 S e 3 =9 =3 — 23 = 18 40 28 2.2 |2 ]
i
Mo 7 =t a—- Wy _|Q ——— o a n lal o NP | 35 - 35 z 2 l | |
le 2 SR —1 & sy >4 =g T ==Yy
2 28 e 40
.} - . 2 vt =19 Wt - N1t _la Mt - LYWL Y —
Vs &¥] £ =t . o T=Tr Lica! (S50 B T  Figuur 19.47
d—
29 o 4 Vul de tabel helemaal in en ga door berekening na dat de gegeven energieén van het energieniveau-
s SS‘ 40 schema van figuur 19.47 kloppen.
In een bepaald experiment wordt de fluorescerende stof aangestraald met fotonen die een energie
wvan 12 keer i?/8mL* hebben.
° Leg uit met behulp van figuur 19.47 hoeveel verschillende frequenties de fluorescerende stof uitzendt
naar het sperfilter in dit experiment.
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diameter van een proton: 10 m (femtometer)

bohr-straal: 53,9 x 1072 (picometer)
Dus atoom zelf heeft 5o0.000 keer de diameter van de kern

vergelijkbaar met zandkorrel die over de buitenste rif rondjes
draait om een kern op de middenstip zo groot als een viieg.

N\

TN

DOpgave 2 Neutronenverstrooiing (naar examen vwo PMN 2005-I)

Woor sommige soorten materiaalonderzoek worden bij voorkeur neutronenbundels gebruikt,
Spanningen in bijvoorbeeld een aluminium vieugeldeel van een vliegtuig hebben tot gevolg dat de
afstanden tussen de atomen veranderen. Met behulp van neutronenverstrooiing kan dit met een hoge
precisie worden gemeten, veel preciezer dan bijvoorbeeld met rdntgenstralen, Neutronen hebben alleen
met de atoomkernen interactie, terwijl rontgenstralen worden verstrooid door de elektronen in een
atoom. Omdat de positie van de elektronen veel minder scherp bepaald is dan die van de atoomkern, is
het resultaat van een meting met neutronen veel nauwkeuriger. Neutronen kunnen bovendien diep in
materie doordringen, zodat er kan worden gemeten binnenin massieve metalen voorwerpen die voor
rantgenstralen ontoegankelijk zijn.

e Vanwege welke eigenschap kunnen neutronen diep in materie doordringen?

7 Leguit wat er in bovenstaande tekst wordt bedoeld met: ‘Omdat de positie van de elektronen veel
minder scherp bepaald is dan die van de atoomkern’.

Voor het maken van neutronenbundels met een hoge intensiteit wordt een kernreactor gebruikt.

De neutronen die geproduceerd worden, hebben een snelheid van de orde van 10" m s~ Men remt de
neutronen af om bundels te krijgen die geschikt zijn voor het uitvoeren van onderzoeken. De groot-
teorde van de structuur die men wil onderzoeken is bepalend voor de gewenste snelheid van de
neutranen. Veor een bepaald type biolegisch onderzoek worden neutronen afgeremd tat1em s,

8 Bereken de De Broglie-gelflengte van een neutron met een snelheid vanioms .

a Leg uit of men neutronen van 1o m s~ beter kan gebruiken om de structuur van DNA te onderzoeken
of die van bacterién. Gebruik gegevens uit Binas tabel JiE en 78.

Er bestaan materialen die neutronen voor bijna honderd procent reflecteren. We stellen ons voor dat
ervan zulke neutronenspiegels een kubus wordt gemaakt met ribben van 1o cm. In deze ‘neutronen-
piegel gieput’ wordt een bundel neutronen opgesloten. De neutronen hebben een kinetische

2\ M
O

~

T

Femnis [kletn

energie van 8,0-107% . Vioor de kinetische energie geldt de formule:
1 i
== s (pi+ pi+pl
Ei=— 7, (pi+ pitpd)

De quantumgetallen n, n, en n, geven voor de x-, y-en 55
z-richting het aantal maxima in de golffunctie van een

enargia: 54,40

s : @ . ]
neutron in deze energieput. We beschouwen een neutrondat = n=f —————————————— 5102 :u
in alledrie de richtingen hetzelfde quantumgetal n heeft. &80 - 48,37 eV

10 Bereken dit quantumgetal n. 45
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DOpgave 2 Neutronenverstrooiing (naar examen vwo PMN 2005-I)

Woor sommige soorten materiaalonderzoek worden bij voorkeur neutronenbundels gebruikt,
Spanningen in bijvoorbeeld een aluminium vieugeldeel van een vliegtuig hebben tot gevolg dat de
afstanden tussen de atomen veranderen. Met behulp van neutronenverstrooiing kan dit met een hoge
precisie worden gemeten, veel preciezer dan bijvoorbeeld met rdntgenstralen, Neutronen hebben alleen
met de atoomkernen interactie, terwijl rontgenstralen worden verstrooid door de elektronen in een
atoom. Omdat de positie van de elektronen veel minder scherp bepaald is dan die van de atoomkern, is
het resultaat van een meting met neutronen veel nauwkeuriger. Neutronen kunnen bovendien diep in
materie doordringen, zodat er kan worden gemeten binnenin massieve metalen voorwerpen die voor
rantgenstralen ontoegankelijk zijn.

e Vanwege welke eigenschap kunnen neutronen diep in materie doordringen?

7 Lequit wat er in bovenstaande tekst wordt bedoeld met; 'Omdat de positie van de elektronen veel

\ &éb 16

(L}
(1]
=
-
o,

deeltjes die je gebruiktis
evengroot als de kleinste details

e

die je met een beeldvormende

techniek zichtbaar kunt maken.
Als de golflengte te groot is gaan

O

interferentie-effecten optreden

ok opg. 24 uit het hoofdstuk.

die het beeld onscherp maken. Zie

minder scherp bepaald is dan die van de atoomkern’.

Voor het maken van neutronenbundels met een hoge intensiteit wordt een kernreactor gebruikt.

De neutronen die geproduceerd worden, hebben een snelheid van de orde van 10" m s~ Men remt de
neutronen af om bundels te krijgen die geschikt zijn voor het uitvoeren van onderzoeken. De groot-
teorde van de structuur die men wil onderzoeken is bepalend voor de gewenste snelheid van de

| ek
Fully resabad Just resolvad
Unresolved

A e \
— 1,61-10 . o
Aerba's el " 1,222 (180
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- -“ﬂj;w’ . VUISTREGEL: : —
elekdtcon's “‘l De golflengte van het licht of Let op: een kleine Conversie van
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neutranen. Veor een bepaald type biolegisch onderzoek worden neutronen afgeremd tat1em s,
8 Bereken de De Broglie-gelflengte van een neutron met een snelheid vanioms .

a Leg uit of men neutronen van 1o m s~ beter kan gebruiken om de structuur van DNA te onderzoeken
of die van bacterién. Gebruik gegevens uit Binas tabel JiE en 78.

Er bestaan materialen die neutronen voor bijna honderd procent reflecteren. We stellen ons voor dat
ervan zulke neutronenspiegels een kubus wordt gemaakt met ribben van 1o cm. In deze ‘neutronen-

spiegelenergieput’ wordt een bundel neutronen opgesloten. De neutronen hebben een kinetische
energie van 8,0-107% . Vioor de kinetische energie geldt de formule:

| .
Ei=— 5 (pitpitpd)

De quantumgetallen n, n, en n, geven voor de x-, y-en

v 55T n=ee ipnisatie-enargie: 54,40 &V
z-richting het aantal maxima in de golffunctie van een
. " @ 52,24 8V
neutron in deze energieput. We beschouwen een neutron dat = = o) = 5107 e
; ¢ e o B e
in alledrie de richtingen hetzelfde quantumgetal n heeft. "y g 8.7 e
10 Bereken dit quantumgetal n. 45
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DOpgave 2 Neutronenverstrooiing (naar examen vwo PMN 2005-I)

Woor sommige soorten materiaalonderzoek worden bij voorkeur neutronenbundels gebruikt,
Spanningen in bijvoorbeeld een aluminium vieugeldeel van een vliegtuig hebben tot gevolg dat de
afstanden tussen de atomen veranderen. Met behulp van neutronenverstrooiing kan dit met een hoge
precisie worden gemeten, veel preciezer dan bijvoorbeeld met rdntgenstralen, Neutronen hebben alleen
met de atoomkernen interactie, terwijl rontgenstralen worden verstrooid door de elektronen in een
atoom. Omdat de positie van de elektronen veel minder scherp bepaald is dan die van de atoomkern, is
het resultaat van een meting met neutronen veel nauwkeuriger. Neutronen kunnen bovendien diep in
materie doordringen, zodat er kan worden gemeten binnenin massieve metalen voorwerpen die voor
rantgenstralen ontoegankelijk zijn.

e Vanwege welke eigenschap kunnen neutronen diep in materie doordringen?

7 Leguit wat er in bovenstaande tekst wordt bedoeld met: ‘Omdat de positie van de elektronen veel
minder scherp bepaald is dan die van de atoomkern’.

Voor het maken van neutronenbundels met een hoge intensiteit wordt een kernreactor gebruikt.

De neutronen die geproduceerd worden, hebben een snelheid van de orde van 10" m s~ Men remt de
neutronen af om bundels te krijgen die geschikt zijn voor het uitvoeren van onderzoeken. De groot-
teorde van de structuur die men wil onderzoeken is bepalend voor de gewenste snelheid van de
neutranen. Veor een bepaald type biolegisch onderzoek worden neutronen afgeremd tat1em s,

8 Bereken de De Broglie-gelflengte van een neutron met een snelheid vanioms .

a Leg uit of men neutronen van 1o m s~ beter kan gebruiken om de structuur van DNA te onderzoeken
of die van bacterién. Gebruik gegevens uit Binas tabel JiE en 78.

Er bestaan materialen die neutronen voor bijna honderd procent reflecteren. We stellen ons voor dat
ervan zulke neutronenspiegels een kubus wordt gemaakt met ribben van 10 cm. In deze ‘neutronen-
pieg gieput’ wordt een bundel neutronen opgesloten. De neutronen hebben een kinetische
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energie van 8,0- 107 ). Vioor de kinetische energie geldt de formule:
| T
Ei=— 5 (pitpitpd)

De quantumgetallen n, n, en n, geven voor de x-, y-en
z-richting het aantal maxima in de golffunctie van een
neutron in deze energieput. We beschouwen een neutron dat
in alledrie de richtingen hetzelfde quantumgetal n heeft.

Lx= LS": I—Z = L__
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10 Bereken dit quantumgetal n.
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= = T ionizatie-gnargia: 54,40 eV
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Opgave 3 Geioniseerd helium (naar examen vwo PMN gl s
| 2003-T)
i LA Wﬂltefsto.? : De energieniveaus van een atoom of ion met maar 1 elektron
o 3 2 worden gegeven doar de formule BT
q Yy z.n:!ZZ 24
- mﬁ'r[:{z e qu) — (q.e };‘,,:Tg?—e wt
= n"~ T 9 1 L =
) - Het spectrum van éénmaal geioniseerd helium (He*) heeft een |
n h 1] hhum sterke overeenkomst met dat van neutraal waterstof (H). In ®
figuur 19.48 is een energieniveauschema van dit helium gete-
1 L kend. Dit energieniveauschema is goed vergelijkbaar met dat van 2T
22 Y (22 . e) = q [ waterstof in tabel 214 van Einas. Er bestaat een eenvoudige
!_i s 1] : mr e &« - getalsmatige relatie tussen de energiewaarden van H en He'. 154
T i il Lie opa? -
n I J 7 — - 1 Verklaar deze relatie met behulp van de gegeven formule il
41 2 1 ‘ul'lnuwa Fd 3 voor £,
n h L R AR L W t'
[ 2 gTU 4
/(3 N\ Y sugill =% d
] e = Q- @ R S Y
F i 9 m 1'11'1{ QL’ e/ {‘n 2) ﬁ a ‘ ‘t[ n = U lnergievl::e::‘xhema A
) 2 a Figuur 19.48
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helium lithium
I kansverdeling ST

it e ——— - -
. . Figuur 19.49 4 Figuur 19.50 =il

L1 L O O O O OO P O

' Opg. 12: Figuur 19.49 is logisch omdat er een sterkere aantrekking is tussen de tweewaardig positieve

|__kern van helium en het enkele elektron dat eenmalig geioniseerd helium nog heeft. Daardoor is op elke
afstand van het midden de potentiele energie groter als je bedenkt dat je je deze energie kunt

—voorstellen als elektrische potentiele energie tussen ladingen. De waarschijnlijkheidsverdeling van de
positie van het elektron in figuur 19.50 is smaller en hoger dan die van waterstof omdat door de

| sterkere aantrekking van de 2+ heliumkern het elektron de meeste tijd dichter bij de kern zal zijn danin
waterstof.

13 Leg uit welk van de golffuncties in figuur 19.52 correspondeert met de

In figuur 19.49 staat de potentiéle energie van het elektron in het waterstofatoom en die in het
heliumion als functie van de afstand x tot de kern. In figuur 19.50 is voor de grondtoestand van het
waterstofatoom een grafiek getekend. Deze grafiek geeft de kans om het elektron in een bepaald
(zeer klein) volumegebiedje aan te treffen als functie van x.

kansverdeling

A Figuur 19.49 A Figuur 19,50
12 Neem figuur 19.50 over en schets in deze figuur een dergelijke grafiek voor de grondtoestand van het
heliumion en leg uit waarin de kansverdelingen voor H en He* verschillen.

Figuur 19.51 stelt een bolsymmetrische kansverdeling voor van een aangeslagen toestand van het
heliumion. De stippendichtheid op een plaats is een maat voor de kans om een elektron op die plaats
aan te treffen.

L: n=1
nm2
=3

A Figuur 19.51 fn=4
Figuur 19.52 geeft de grafieken van enkele bolsymmetrische golffunc-
ties van het heliumion, getekend als functie van de afstand tot de kern.
De getallen n =1, 2,3, 4, 5 zijn de quantumgetallen behorend bij de P
energietoestanden van het heliumion,

A Figuur 19.52
waarschijnlijkheidsverdeling in figuurig.s.



Figuur 19.51 stelt een bolsymmetrische kansverdeling voor van een aangeslagen toestand van het Hoofdstuk 19: Quantu mfysica
heliumion. De stippendichtheid op een plaats is een maat voor de kans om een elektron op die plaats
aan te treffen.
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ok n=4
|
Figuur 19.52 geeft de grafieken van enkele bolsymmetrische golffunc-
ties van het heliumion, getekend als functie van de afstand tot de kern.
De getallen n =1, 2, 3, 4, 5 zijn de quantumgetallen behorend bij de \ —_

energietoestanden van het heliumion. o~

13 Leg uit welk van de golffuncties in figuur 19.52 correspondeert met de a Figuur 19.52 |

waarschijnlijkheidsverdeling in figuur 19.51. A Better W Pi ; (YouTube 5min) —
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14 Leg uit dat de energie van een &

Opgave 4 Quantumdots (naar examen vwo PMN 2005-IT)

Met nanotechnolegie kunnen quantumdots worden gemaakt. Een quantumdot is een klein systeem

waarin zich twee soorten elektronen bevinden:

+ elektronen die gebonden zijn aan atomen van het materiaal in de quantumdot;

« een beperkt aantal zogenaamde geleidingselektronen. Deze kunnen vrij door de quantumdaot
bewegen. Op deze geleidingselektronen is in goede benadering het deeltje-in-een-energieputmodel
van toepassing.

Figuur 19.53 a toont een opname met een elektronenmicroscoop van een paddenstoelachtige structuur
die een quantumdot bevat. De eigenlijke quantumdot is een dun laagje in de steel van de paddenstoel,
zie figuur 19.53 b

Er zijn drie elektroden op aangesloten: een negatieve pool, een positieve pool en een stuurelektrode. De
potentiaal van de stuurelektrode bepaalt het aantal geleidingselektronen.

pasitieve pool

stuurelektrode B
AN
u

quantum dot negatieve pool

b)

1.0 nm

T 10 nm

a Figuur 19.53

In de quantumdaot is éé

x-y- en z-richting het 3 tal g 'rn in de golffunctie van dit elektron. De grondtoestand van het
elektron wordt geggle

De energie gegely rdtgdoor dfformule

21’1 (pi+ pi+phimdp, = gi en sdortgelijk voor p, en p..

dat in toestand (1, 1, 2) de energie ed Oroter is,
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z Een toepassing van de quantumdot is de constructie van microscopisch kleine lichtbronnen in iedere
Hoofdstuk 19: Quantumfysica gewensie Keur

15 Bereken de minimale frequentie van een foton dat door de quantumdot wordt uitgezonden.

J 16 Bereken de energie in toestand (1,1, 2).

condboestand (Y N "

Ci s 4 L '|’ 'Iu J :‘-“-S nz" ! 7 \-‘}5 en ‘ﬂ I;' Het aantal geleidingselektronen in de quantumdot wordt verhoogd tot 5. De verdeling van de
elektronen over de energietoestanden is zodanig dat de totale energie minimaal is.

17 Leg uit op welke twee manieren deze vijf elektronen verdeeld kunnen zijn over de beschikbare
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Opgave 5 Caroteen (naar examen vwo PMN 2004-1)

. . . ] ] Caroteen is de naam voor een groep koolwaterstoffen met de molecuulformule C..H.. Ze komen B
bijvoorbeeld voor in waspeen (worteltjes) en manga's. Een model van een caroteenmolecuul CooHye is

gegeven in figuur 19.54.
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Volgens de theorie van moleculaire bindingen zijn er bij de bindingen in caroteen twee soorten elektron-
toestanden betrokken: o-elektronen en n-elektronen. De o-elektronen zitten op vaste plaatsen, maar de
ni-elektronen hebben een zekere bewegingsvrijheid langs het molecuul en hierop is in goede benadering
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In figuur 19.55 is het absorptiespectrum van caroteen gegeven. Horizontaal staat de golflengte, verticaal
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@Verklaar de kleur van worteltjes met behulp van dit spectrum. —
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n - * 9 d Bij caroteen blijkt dat er 22 n-elektronen per molecuul zijn. Er is een energie nodig van 2,76 eV om het

eerste m-elektron aan te slaan, —

‘ - 19 Leg uit welke energieniveaus betrokken zijn bij het laan van het eerste m-elektron. Houdt er
62610 o
- L= J

hierbij rekening mee dat er in elke energietoestand twee elektronen passen, Het eerste elektron dat  ——
aangeslagen kan worden moet dus vanuit het hoogste energieniveau naar het niveau daarboven,
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20 Bereken de effectieve lengte waarlangs de elektronen volgens dit model vrij kunnen bewegen. L|Ch1
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8. De impuls van een massadeeltje is een behouden

grootheid en kun je uitrekenen met:

§ 19.2 Deeltjes en golven

Hoofdstuk 19: Quantumfysica

absolute behoudswetten:
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